Back to Search
Start Over
Classification Models for Partially Ordered Sequences
- Publication Year :
- 2021
-
Abstract
- Many models such as Long Short Term Memory (LSTMs), Gated Recurrent Units (GRUs) and transformers have been developed to classify time series data with the assumption that events in a sequence are ordered. On the other hand, fewer models have been developed for set based inputs, where order does not matter. There are several use cases where data is given as partially-ordered sequences because of the granularity or uncertainty of time stamps. We introduce a novel transformer based model for such prediction tasks, and benchmark against extensions of existing order invariant models. We also discuss how transition probabilities between events in a sequence can be used to improve model performance. We show that the transformer-based equal-time model outperforms extensions of existing set models on three data sets.
- Subjects :
- Computer Science - Machine Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.2102.00380
- Document Type :
- Working Paper