1. Tunable glassy dynamics in models of dense cellular tissue
- Author
-
Ansell, Helen S., Li, Chengling, and Sussman, Daniel M.
- Subjects
Condensed Matter - Soft Condensed Matter ,Physics - Biological Physics - Abstract
Observations of glassy dynamics in experiments on confluent cellular tissue have inspired a wealth of computational and theoretical research to model their emergent collective behavior. Initial studies of the physical properties of several geometric cell models, including vertex-type models, have highlighted anomalous sub-Arrhenius, or "ultra-strong," scaling of the dynamics with temperature. Here we show that the dynamics and material properties of the 2d Voronoi model deviate even further from the standard glassforming paradigm. By varying the characteristic shape index $p_0$, we demonstrate that the system properties can be tuned between displaying expected glassforming behavior, including the breakdown of the Stokes-Einstein-Sutherland relation and the formation of dynamical heterogeneities, and an unusual regime in which the viscosity does not diverge as the characteristic relaxation time increase and dynamical heterogeneities are strongly suppressed. Our results provide further insight into the fundamental properties of this class of anomalous glassy materials, and provide a step towards designing materials with predetermined glassy dynamics., Comment: 10 pages, 4 figures
- Published
- 2024