14 results on '"Granulometries"'
Search Results
2. Morphology for grey-scale images
- Author
-
Heijmans, H.J.A.M. (Henk J.A.M.) and Heijmans, H.J.A.M. (Henk J.A.M.)
- Abstract
The mathematical morphology of grey-level images has many special features, which are the subject of this chapter. A general procedure for proceeding from binary to grey-level morphology was presented in an earlier chapter. Here, each aspect of the morphological analysis of grey-level images is examined in depth.
- Published
- 2020
- Full Text
- View/download PDF
3. Openings and closings
- Author
-
Heijmans, H.J.A.M. (Henk) and Heijmans, H.J.A.M. (Henk)
- Abstract
Opening and closings are examined in depth. The notion of structural opening, which constitutes a basis for the class of all openings (and likewise for closings) is introduced. A second important class of openings is constituted by the adjunctional openings. Annular openings, inf-overfilters and incidence structures are also explained.
- Published
- 2020
- Full Text
- View/download PDF
4. Morphology for grey-scale images
- Author
-
Heijmans, H.J.A.M. (Henk J.A.M.) and Heijmans, H.J.A.M. (Henk J.A.M.)
- Abstract
The mathematical morphology of grey-level images has many special features, which are the subject of this chapter. A general procedure for proceeding from binary to grey-level morphology was presented in an earlier chapter. Here, each aspect of the morphological analysis of grey-level images is examined in depth.
- Published
- 2020
- Full Text
- View/download PDF
5. Convexity, distance, and connectivity
- Author
-
Heijmans, H.J.A.M. (Henk) and Heijmans, H.J.A.M. (Henk)
- Abstract
In order to extract geometric information from images, suitable operators must be constructed. After a discussion of convexity and geodesic distance, the important notion of metric dilation is introduced, followed by that of distance transforms. Sections are then devoted to geodesic and conditional operators, granulometries, connectivity and skeletons. A final section considers discrete metric spaces.
- Published
- 2020
- Full Text
- View/download PDF
6. Openings and closings
- Author
-
Heijmans, H.J.A.M. (Henk) and Heijmans, H.J.A.M. (Henk)
- Abstract
Opening and closings are examined in depth. The notion of structural opening, which constitutes a basis for the class of all openings (and likewise for closings) is introduced. A second important class of openings is constituted by the adjunctional openings. Annular openings, inf-overfilters and incidence structures are also explained.
- Published
- 2020
- Full Text
- View/download PDF
7. A New Optical Density Granulometry-Based Descriptor for the Classification of Prostate Histological Images Using Shallow and Deep Gaussian Processes
- Author
-
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Ministerio de Economía y Competitividad, Esteban, A. E., López-Pérez, Miguel, Colomer, Adrián, Sales, Maria A., Molina, Rafael, Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Ministerio de Economía y Competitividad, Esteban, A. E., López-Pérez, Miguel, Colomer, Adrián, Sales, Maria A., Molina, Rafael, and Naranjo Ornedo, Valeriana
- Abstract
[EN] Background and objective Prostate cancer is one of the most common male tumors. The increasing use of whole slide digital scanners has led to an enormous interest in the application of machine learning techniques to histopathological image classification. Here we introduce a novel family of morphological descriptors which, extracted in the appropriate image space and combined with shallow and deep Gaussian process based classifiers, improves early prostate cancer diagnosis. Method We decompose the acquired RGB image in its RGB and optical density hematoxylin and eosin components. Then, we define two novel granulometry-based descriptors which work in both, RGB and optical density, spaces but perform better when used on the latter. In this space they clearly encapsulate knowledge used by pathologists to identify cancer lesions. The obtained features become the inputs to shallow and deep Gaussian process classifiers which achieve an accurate prediction of cancer. Results We have used a real and unique dataset. The dataset is composed of 60 Whole Slide Images. For a five fold cross validation, shallow and deep Gaussian Processes obtain area under ROC curve values higher than 0.98. They outperform current state of the art patch based shallow classifiers and are very competitive to the best performing deep learning method. Models were also compared on 17 Whole Slide test Images using the FROC curve. With the cost of one false positive, the best performing method, the one layer Gaussian process, identifies 83.87% (sensitivity) of all annotated cancer in the Whole Slide Image. This result corroborates the quality of the extracted features, no more than a layer is needed to achieve excellent generalization results. Conclusion Two new descriptors to extract morphological features from histological images have been proposed. They collect very relevant information for cancer detection. From these descriptors, shallow and deep Gaussian Processes are capable of extracting th
- Published
- 2019
8. Fundus image analysis for automatic screening of ophthalmic pathologies
- Author
-
Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Colomer Granero, Adrián, Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, and Colomer Granero, Adrián
- Abstract
En los ultimos años el número de casos de ceguera se ha reducido significativamente. A pesar de este hecho, la Organización Mundial de la Salud estima que un 80% de los casos de pérdida de visión (285 millones en 2010) pueden ser evitados si se diagnostican en sus estadios más tempranos y son tratados de forma efectiva. Para cumplir esta propuesta se pretende que los servicios de atención primaria incluyan un seguimiento oftalmológico de sus pacientes así como fomentar campañas de cribado en centros proclives a reunir personas de alto riesgo. Sin embargo, estas soluciones exigen una alta carga de trabajo de personal experto entrenado en el análisis de los patrones anómalos propios de cada enfermedad. Por lo tanto, el desarrollo de algoritmos para la creación de sistemas de cribado automáticos juga un papel vital en este campo. La presente tesis persigue la identificacion automática del daño retiniano provocado por dos de las patologías más comunes en la sociedad actual: la retinopatía diabética (RD) y la degenaración macular asociada a la edad (DMAE). Concretamente, el objetivo final de este trabajo es el desarrollo de métodos novedosos basados en la extracción de características de la imagen de fondo de ojo y clasificación para discernir entre tejido sano y patológico. Además, en este documento se proponen algoritmos de pre-procesado con el objetivo de normalizar la alta variabilidad existente en las bases de datos publicas de imagen de fondo de ojo y eliminar la contribución de ciertas estructuras retinianas que afectan negativamente en la detección del daño retiniano. A diferencia de la mayoría de los trabajos existentes en el estado del arte sobre detección de patologías en imagen de fondo de ojo, los métodos propuestos a lo largo de este manuscrito evitan la necesidad de segmentación de las lesiones o la generación de un mapa de candidatos antes de la fase de clasificación. En este trabajo, Local binary patterns, perfiles granulométricos y la dimensión fractal, In last years, the number of blindness cases has been significantly reduced. Despite this promising news, the World Health Organisation estimates that 80% of visual impairment (285 million cases in 2010) could be avoided if diagnosed and treated early. To accomplish this purpose, eye care services need to be established in primary health and screening campaigns should be a common task in centres with people at risk. However, these solutions entail a high workload for trained experts in the analysis of the anomalous patterns of each eye disease. Therefore, the development of algorithms for automatic screening system plays a vital role in this field. This thesis focuses on the automatic identification of the retinal damage provoked by two of the most common pathologies in the current society: diabetic retinopathy (DR) and age-related macular degeneration (AMD). Specifically, the final goal of this work is to develop novel methods, based on fundus image description and classification, to characterise the healthy and abnormal tissue in the retina background. In addition, pre-processing algorithms are proposed with the aim of normalising the high variability of fundus images and removing the contribution of some retinal structures that could hinder in the retinal damage detection. In contrast to the most of the state-of-the-art works in damage detection using fundus images, the methods proposed throughout this manuscript avoid the necessity of lesion segmentation or the candidate map generation before the classification stage. Local binary patterns, granulometric profiles and fractal dimension are locally computed to extract texture, morphological and roughness information from retinal images. Different combinations of this information feed advanced classification algorithms formulated to optimally discriminate exudates, microaneurysms, haemorrhages and healthy tissues. Through several experiments, the ability of the proposed system to identify DR and AMD signs is valida, En els últims anys el nombre de casos de ceguera s'ha reduït significativament. A pesar d'este fet, l'Organització Mundial de la Salut estima que un 80% dels casos de pèrdua de visió (285 milions en 2010) poden ser evitats si es diagnostiquen en els seus estadis més primerencs i són tractats de forma efectiva. Per a complir esta proposta es pretén que els servicis d'atenció primària incloguen un seguiment oftalmològic dels seus pacients així com fomentar campanyes de garbellament en centres regentats per persones d'alt risc. No obstant això, estes solucions exigixen una alta càrrega de treball de personal expert entrenat en l'anàlisi dels patrons anòmals propis de cada malaltia. Per tant, el desenrotllament d'algoritmes per a la creació de sistemes de garbellament automàtics juga un paper vital en este camp. La present tesi perseguix la identificació automàtica del dany retiniano provocat per dos de les patologies més comunes en la societat actual: la retinopatia diabètica (RD) i la degenaración macular associada a l'edat (DMAE) . Concretament, l'objectiu final d'este treball és el desenrotllament de mètodes novedodos basats en l'extracció de característiques de la imatge de fons d'ull i classificació per a discernir entre teixit sa i patològic. A més, en este document es proposen algoritmes de pre- processat amb l'objectiu de normalitzar l'alta variabilitat existent en les bases de dades publiques d'imatge de fons d'ull i eliminar la contribució de certes estructures retinianas que afecten negativament en la detecció del dany retiniano. A diferència de la majoria dels treballs existents en l'estat de l'art sobre detecció de patologies en imatge de fons d'ull, els mètodes proposats al llarg d'este manuscrit eviten la necessitat de segmentació de les lesions o la generació d'un mapa de candidats abans de la fase de classificació. En este treball, Local binary patterns, perfils granulometrics i la dimensió fractal s'apliquen de manera local per a extraure informació d
- Published
- 2018
9. Fundus image analysis for automatic screening of ophthalmic pathologies
- Author
-
Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Colomer Granero, Adrián, Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, and Colomer Granero, Adrián
- Abstract
En los ultimos años el número de casos de ceguera se ha reducido significativamente. A pesar de este hecho, la Organización Mundial de la Salud estima que un 80% de los casos de pérdida de visión (285 millones en 2010) pueden ser evitados si se diagnostican en sus estadios más tempranos y son tratados de forma efectiva. Para cumplir esta propuesta se pretende que los servicios de atención primaria incluyan un seguimiento oftalmológico de sus pacientes así como fomentar campañas de cribado en centros proclives a reunir personas de alto riesgo. Sin embargo, estas soluciones exigen una alta carga de trabajo de personal experto entrenado en el análisis de los patrones anómalos propios de cada enfermedad. Por lo tanto, el desarrollo de algoritmos para la creación de sistemas de cribado automáticos juga un papel vital en este campo. La presente tesis persigue la identificacion automática del daño retiniano provocado por dos de las patologías más comunes en la sociedad actual: la retinopatía diabética (RD) y la degenaración macular asociada a la edad (DMAE). Concretamente, el objetivo final de este trabajo es el desarrollo de métodos novedosos basados en la extracción de características de la imagen de fondo de ojo y clasificación para discernir entre tejido sano y patológico. Además, en este documento se proponen algoritmos de pre-procesado con el objetivo de normalizar la alta variabilidad existente en las bases de datos publicas de imagen de fondo de ojo y eliminar la contribución de ciertas estructuras retinianas que afectan negativamente en la detección del daño retiniano. A diferencia de la mayoría de los trabajos existentes en el estado del arte sobre detección de patologías en imagen de fondo de ojo, los métodos propuestos a lo largo de este manuscrito evitan la necesidad de segmentación de las lesiones o la generación de un mapa de candidatos antes de la fase de clasificación. En este trabajo, Local binary patterns, perfiles granulométricos y la dimensión fractal, In last years, the number of blindness cases has been significantly reduced. Despite this promising news, the World Health Organisation estimates that 80% of visual impairment (285 million cases in 2010) could be avoided if diagnosed and treated early. To accomplish this purpose, eye care services need to be established in primary health and screening campaigns should be a common task in centres with people at risk. However, these solutions entail a high workload for trained experts in the analysis of the anomalous patterns of each eye disease. Therefore, the development of algorithms for automatic screening system plays a vital role in this field. This thesis focuses on the automatic identification of the retinal damage provoked by two of the most common pathologies in the current society: diabetic retinopathy (DR) and age-related macular degeneration (AMD). Specifically, the final goal of this work is to develop novel methods, based on fundus image description and classification, to characterise the healthy and abnormal tissue in the retina background. In addition, pre-processing algorithms are proposed with the aim of normalising the high variability of fundus images and removing the contribution of some retinal structures that could hinder in the retinal damage detection. In contrast to the most of the state-of-the-art works in damage detection using fundus images, the methods proposed throughout this manuscript avoid the necessity of lesion segmentation or the candidate map generation before the classification stage. Local binary patterns, granulometric profiles and fractal dimension are locally computed to extract texture, morphological and roughness information from retinal images. Different combinations of this information feed advanced classification algorithms formulated to optimally discriminate exudates, microaneurysms, haemorrhages and healthy tissues. Through several experiments, the ability of the proposed system to identify DR and AMD signs is valida, En els últims anys el nombre de casos de ceguera s'ha reduït significativament. A pesar d'este fet, l'Organització Mundial de la Salut estima que un 80% dels casos de pèrdua de visió (285 milions en 2010) poden ser evitats si es diagnostiquen en els seus estadis més primerencs i són tractats de forma efectiva. Per a complir esta proposta es pretén que els servicis d'atenció primària incloguen un seguiment oftalmològic dels seus pacients així com fomentar campanyes de garbellament en centres regentats per persones d'alt risc. No obstant això, estes solucions exigixen una alta càrrega de treball de personal expert entrenat en l'anàlisi dels patrons anòmals propis de cada malaltia. Per tant, el desenrotllament d'algoritmes per a la creació de sistemes de garbellament automàtics juga un paper vital en este camp. La present tesi perseguix la identificació automàtica del dany retiniano provocat per dos de les patologies més comunes en la societat actual: la retinopatia diabètica (RD) i la degenaración macular associada a l'edat (DMAE) . Concretament, l'objectiu final d'este treball és el desenrotllament de mètodes novedodos basats en l'extracció de característiques de la imatge de fons d'ull i classificació per a discernir entre teixit sa i patològic. A més, en este document es proposen algoritmes de pre- processat amb l'objectiu de normalitzar l'alta variabilitat existent en les bases de dades publiques d'imatge de fons d'ull i eliminar la contribució de certes estructures retinianas que afecten negativament en la detecció del dany retiniano. A diferència de la majoria dels treballs existents en l'estat de l'art sobre detecció de patologies en imatge de fons d'ull, els mètodes proposats al llarg d'este manuscrit eviten la necessitat de segmentació de les lesions o la generació d'un mapa de candidats abans de la fase de classificació. En este treball, Local binary patterns, perfils granulometrics i la dimensió fractal s'apliquen de manera local per a extraure informació d
- Published
- 2018
10. Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images
- Author
-
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Commission, Ministerio de Economía y Competitividad, Pereira, Joana, Colomer, Adrián, Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Commission, Ministerio de Economía y Competitividad, Pereira, Joana, Colomer, Adrián, and Naranjo Ornedo, Valeriana
- Abstract
Diabetic Retinopathy (DR) is a severe and widely spread eye disease. Exudates are one of the most prevalent signs during the early stage of DR and an early detection of these lesions is vital to prevent the patient’s blindness. Hence, detection of exudates is an important diagnostic task of DR, in which computer assistance may play a major role. In this paper, a system based on local feature extraction and Support Vector Machine (SVM) classification is used to develop and compare different strategies for automated detection of exudates. The main novelty of this work is allowing the detection of exudates using non-regular regions to perform the local feature extraction. To accomplish this objective, different methods for generating superpixels are applied to the fundus images of E-OPHTA database and texture and morphological features are extracted for each of the resulting regions. An exhaustive comparison among the proposed methods is also carried out.
- Published
- 2018
11. Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images
- Author
-
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Commission, Ministerio de Economía y Competitividad, Pereira, Joana, Colomer, Adrián, Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Commission, Ministerio de Economía y Competitividad, Pereira, Joana, Colomer, Adrián, and Naranjo Ornedo, Valeriana
- Abstract
Diabetic Retinopathy (DR) is a severe and widely spread eye disease. Exudates are one of the most prevalent signs during the early stage of DR and an early detection of these lesions is vital to prevent the patient’s blindness. Hence, detection of exudates is an important diagnostic task of DR, in which computer assistance may play a major role. In this paper, a system based on local feature extraction and Support Vector Machine (SVM) classification is used to develop and compare different strategies for automated detection of exudates. The main novelty of this work is allowing the detection of exudates using non-regular regions to perform the local feature extraction. To accomplish this objective, different methods for generating superpixels are applied to the fundus images of E-OPHTA database and texture and morphological features are extracted for each of the resulting regions. An exhaustive comparison among the proposed methods is also carried out.
- Published
- 2018
12. Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images
- Author
-
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Commission, Ministerio de Economía y Competitividad, Pereira, Joana, Colomer, Adrián, Naranjo Ornedo, Valeriana, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Commission, Ministerio de Economía y Competitividad, Pereira, Joana, Colomer, Adrián, and Naranjo Ornedo, Valeriana
- Abstract
Diabetic Retinopathy (DR) is a severe and widely spread eye disease. Exudates are one of the most prevalent signs during the early stage of DR and an early detection of these lesions is vital to prevent the patient’s blindness. Hence, detection of exudates is an important diagnostic task of DR, in which computer assistance may play a major role. In this paper, a system based on local feature extraction and Support Vector Machine (SVM) classification is used to develop and compare different strategies for automated detection of exudates. The main novelty of this work is allowing the detection of exudates using non-regular regions to perform the local feature extraction. To accomplish this objective, different methods for generating superpixels are applied to the fundus images of E-OPHTA database and texture and morphological features are extracted for each of the resulting regions. An exhaustive comparison among the proposed methods is also carried out.
- Published
- 2018
13. Shape-Only Granulometries and Gray-Scale Shape Filters
- Author
-
Urbach, E.R., Urbach, E.R., Wilkinson, M.H.F., Urbach, E.R., Urbach, E.R., and Wilkinson, M.H.F.
- Abstract
Multiscale methods which provide a decomposition of an image based on scale have many uses in image analysis. One class of such methods from mathematical morphology is based on size distributions or granulometries. In this paper a different type of image decomposition based on shape but not scale is proposed. Called a shape granulometry or shape distribution, it is built from a family of morphological thinnings, rather than openings as in the case of size distributions. An implementation based on scale invariant attribute thinnings is presented, and an example of an application is shown.
- Published
- 2002
14. Shape-Only Granulometries and Gray-Scale Shape Filters
- Author
-
Urbach, E.R., Wilkinson, M.H.F., Urbach, E.R., and Wilkinson, M.H.F.
- Abstract
Multiscale methods which provide a decomposition of an image based on scale have many uses in image analysis. One class of such methods from mathematical morphology is based on size distributions or granulometries. In this paper a different type of image decomposition based on shape but not scale is proposed. Called a shape granulometry or shape distribution, it is built from a family of morphological thinnings, rather than openings as in the case of size distributions. An implementation based on scale invariant attribute thinnings is presented, and an example of an application is shown.
- Published
- 2002
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.