Back to Search Start Over

Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images

Authors :
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
European Commission
Ministerio de Economía y Competitividad
Pereira, Joana
Colomer, Adrián
Naranjo Ornedo, Valeriana
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
European Commission
Ministerio de Economía y Competitividad
Pereira, Joana
Colomer, Adrián
Naranjo Ornedo, Valeriana
Publication Year :
2018

Abstract

Diabetic Retinopathy (DR) is a severe and widely spread eye disease. Exudates are one of the most prevalent signs during the early stage of DR and an early detection of these lesions is vital to prevent the patient’s blindness. Hence, detection of exudates is an important diagnostic task of DR, in which computer assistance may play a major role. In this paper, a system based on local feature extraction and Support Vector Machine (SVM) classification is used to develop and compare different strategies for automated detection of exudates. The main novelty of this work is allowing the detection of exudates using non-regular regions to perform the local feature extraction. To accomplish this objective, different methods for generating superpixels are applied to the fundus images of E-OPHTA database and texture and morphological features are extracted for each of the resulting regions. An exhaustive comparison among the proposed methods is also carried out.

Details

Database :
OAIster
Notes :
TEXT, TEXT, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1198907265
Document Type :
Electronic Resource