1. Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation
- Author
-
Anderson, Maya, Amit, Guy, Goldsteen, Abigail, Anderson, Maya, Amit, Guy, and Goldsteen, Abigail
- Abstract
Retrieval Augmented Generation (RAG) systems have shown great promise in natural language processing. However, their reliance on data stored in a retrieval database, which may contain proprietary or sensitive information, introduces new privacy concerns. Specifically, an attacker may be able to infer whether a certain text passage appears in the retrieval database by observing the outputs of the RAG system, an attack known as a Membership Inference Attack (MIA). Despite the significance of this threat, MIAs against RAG systems have yet remained under-explored. This study addresses this gap by introducing an efficient and easy-to-use method for conducting MIA against RAG systems. We demonstrate the effectiveness of our attack using two benchmark datasets and multiple generative models, showing that the membership of a document in the retrieval database can be efficiently determined through the creation of an appropriate prompt in both black-box and gray-box settings. Our findings highlight the importance of implementing security countermeasures in deployed RAG systems to protect the privacy and security of retrieval databases., Comment: 7 pages, 3 figures
- Published
- 2024