103 results on '"Ruiz, C. L."'
Search Results
2. Neutron time-of-flight detectors (nTOF) used at Sandia's Z-Machine.
- Author
-
Chandler, G. A., Ruiz, C. L., Cooper, G. W., Torres, J. A., Mangan, M. A., Whitlow, G. M., Ampleford, D. J., Jones, M. C., Buckles, R. A., Moy, K. J., Garza, I., Staska, M., Wolverton, A., and Davis, B.
- Subjects
- *
NEUTRON counters , *SCINTILLATION counters , *INERTIAL confinement fusion , *PHYSICS experiments , *GOVERNMENT laboratories , *NEUTRONS - Abstract
Neutron time-of-flight (nTOF) detectors have been used on Sandia National Laboratories' Z-Machine for inertial confinement fusion and magnetized liner fusion experiments to infer physics parameters including the apparent fuel-ion temperature, neutron yield, the magnetic-radius product (BR), and the liner rho-r. Single-paddle, dual-paddle, and co-axial scintillation nTOF detectors are used in axial lines-of-sight (LOS) and LOS that are 12° from the midplane. Detector fabrication, characterization, and calibration are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Inferring neutron yields using indium activation samples for small fractions of tritium added to deuterium fuel in inertial confinement fusion (ICF) experiments.
- Author
-
Mangan, M. A., Ruiz, C. L., Cooper, G. W., Chandler, G. A., and Ampleford, D. J.
- Subjects
- *
INERTIAL confinement fusion , *TRITIUM , *THERMONUCLEAR fusion , *THRESHOLD energy , *NEUTRONS , *DEUTERIUM , *NEUTRON temperature - Abstract
In inertial confinement fusion experiments, the neutron yield is an important metric for thermonuclear fusion performance. Neutron activation diagnostics can be used to infer neutron yields. The material used for neutron activation diagnostic undergoes a threshold reaction so that only neutrons having energies above the threshold energy are observed. For thermonuclear experiments using deuterium (D) and tritium (T) fuel constituents, neutrons arising from D + D reactions (DD-neutrons) and neutrons resulting from D + T reactions (DT-neutrons) are of primary interest. Indium has two neutron activation reactions that can be used to infer yields of DD-neutrons and DT-neutrons. One threshold is high enough that only DT-neutrons can induce activation, the second reaction can be activated by both DD-neutrons and DT-neutrons. Thus, to obtain the DD-neutron yield, the contribution made by DT-neutrons to the total induced activity must be extracted. In DD-fuel experiments, DT-neutrons arise from secondary reactions, which are significantly lower in number than primary DD-neutrons, and their contribution to the inferred DD-neutron yield can be ignored. When the DD- and DT-neutron yields become comparable, such as when low tritium fractions are added to DD-fuel, the contribution of DT-neutrons must be extracted to obtain accurate yields. A general method is described for this correction to DD-neutron yields. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
4. A neutron recoil-spectrometer for measuring yield and determining liner areal densities at the Z facility.
- Author
-
Lahmann, B., Gatu Johnson, M., Hahn, K. D., Frenje, J. A., Ampleford, D. J., Jones, B., Mangan, M. A., Maurer, A., Ruiz, C. L., Séguin, F. H., and Petrasso, R. D.
- Subjects
NEUTRONS ,MAGNETIC recorders & recording ,NEUTRON radiography ,PROTHROMBIN ,DENSITY ,INDIUM - Abstract
A proof-of-principle CR-39 based neutron-recoil-spectrometer was built and fielded on the Z facility. Data from this experiment match indium activation yields within a factor of 2 using simplified instrument response function models. The data also demonstrate the need for neutron shielding in order to infer liner areal densities. A new shielded design has been developed. The spectrometer is expected to achieve signal-to-background greater than 2 for the down-scattered neutron signal and greater than 30 for the primary signal. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
5. Extreme-ultraviolet illumination effects on the PBFA-I magnetically insulated ion diode.
- Author
-
Maenchen, J. E., Woodworth, J. R., Mehlhorn, T. A., Renk, T., Ruiz, C. L., Foltz, B. W., Jaramillo, W. H., Wenger, D. F., Reyes, P., and Guidotti, K.
- Subjects
ULTRAVIOLET radiation ,PARTICLE beams ,DIODES - Abstract
Presents a study which examined the effects of extreme-ultraviolet (XUV) illumination on particle beam fusion accelerator-I (PBFA-I) magnetically insulated ion diode. Types of detectors used to look for plasma or neutrals crossing the anode-cathode gap; Description of physical processes that occur in the ion diode during XUV illumination; Precursor pulse space-charge conduction limits in regions of XUV illumination.
- Published
- 1989
- Full Text
- View/download PDF
6. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments.
- Author
-
Gomez, M. R., Slutz, S. A., Sefkow, A. B., Hahn, K. D., Hansen, S. B., Knapp, P. F., Schmit, P. F., Ruiz, C. L., Sinars, D. B., Harding, E. C., Jennings, C. A., Awe, T. J., Geissel, M., Rovang, D. C., Smith, I. C., Chandler, G. A., Cooper, G. W., Cuneo, M. E., Harvey-Thompson, A. J., and Herrmann, M. C.
- Subjects
THERMONUCLEAR fusion ,MAGNETIZATION ,INERTIAL confinement fusion ,PHYSICS experiments ,LASER heating - Abstract
The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10
12 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm³. In these experiments, up to 5 × 1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm², this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010 . An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF
7. Predicting the sensitivity of the beryllium/scintillator layer neutron detector using Monte Carlo and experimental response functions.
- Author
-
Styron, J. D., Cooper, G. W., Ruiz, C. L., Hahn, K. D., Chandler, G. A., Nelson, A. J., Torres, J. A., McWatters, B. R., Carpenter, Ken, and Bonura, M. A.
- Subjects
SCINTILLATORS ,LIGHT sources ,GAMMA ray sources ,BERYLLIUM ,NUCLEAR activation analysis - Abstract
A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
8. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity.
- Author
-
Hahn, K. D., Cooper, G. W., Ruiz, C. L., Fehl, D. L., Chandler, G. A., Knapp, P. F., Leeper, R. J., Nelson, A. J., Smelser, R. M., and Torres, J. A.
- Subjects
NEUTRON diffraction ,NEUTRONS ,INERTIAL confinement fusion ,ION beams ,NEUTRON emission ,ENERGY dissipation - Abstract
We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r² decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm² and is ~ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy loss effects. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
9. Deuterium gas-puff Z-pinch implosions on the Z accelerator.
- Author
-
Coverdale, C. A., Deeney, C., Velikovich, A. L., Davis, J., Clark, R. W., Chong, Y. K., Chittenden, J., Chantrenne, S., Ruiz, C. L., Cooper, G. W., Nelson, A. J., Franklin, J., LePell, P. D., Apruzese, J. P., Levine, J., and Banister, J.
- Subjects
DEUTERIUM ,GASES ,NEUTRONS ,PLASMA gases ,PLASMA accelerators ,MAGNETOHYDRODYNAMICS ,SPECTRUM analysis - Abstract
Experiments on the Z accelerator with deuterium gas-puff implosions have produced up to 3.7×10
13 (±20%) neutrons at 2.34 MeV (±0.10 MeV). Although the mechanism for generating these neutrons was not definitively identified, this neutron output is 100 times more than previously observed from neutron-producing experiments at Z. Dopant gases in the deuterium (argon and chlorine) were used to study implosion characteristics and stagnated plasma conditions through x-ray yield measurements and spectroscopy. Magnetohydrodynamic (MHD) calculations have suggested that the dopants improved the neutron output through better plasma compression, which has been studied in experiments increasing the dopant fraction. Scaling these experiments, and additional MHD calculations, suggest that ∼5×1014 deuterium-deuterium (DD) neutrons could be generated at the 26-MA refurbished Z facility. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
10. Z-pinch plasma neutron sources.
- Author
-
Velikovich, A. L., Clark, R. W., Davis, J., Chong, Y. K., Deeney, C., Coverdale, C. A., Ruiz, C. L., Cooper, G. W., Nelson, A. J., Franklin, J., and Rudakov, L. I.
- Subjects
NEUTRONS ,DEUTERIUM ,TRITIUM ,LASER beams ,PLASMA accelerators - Abstract
A deuterium gas-puff load imploded by a multi-MA current driver from a large initial diameter could be a powerful source of fusion neutrons, a plasma neutron source (PNS). Unlike the beam-target neutrons produced in Z-pinch plasmas in the 1950s and deuterium-fiber experiments in the 1980s, the neutrons generated in deuterium gas-puffs with current levels achieved in recent experiments on the Z facility at Sandia National Laboratories could contain a substantial fraction of thermonuclear origin. For recent deuterium gas-puff shots on Z, our analytic estimates and one- and two-dimensional simulations predict thermal neutron yields ∼3×10
13 , in fair agreement with the yields recently measured on Z [C. A. Coverdale et al., Phys. Plasmas (to be published)]. It is demonstrated that the hypothesis of a beam-target origin of the observed fusion neutrons implies a very high Z-pinch-driver-to-fast-ions energy transfer efficiency, 5 to 10%, which would make a multi-MA deuterium Z-pinch the most efficient light-ion accelerator. No matter what mechanism is eventually determined to be responsible for generating fusion neutrons in deuterium gas-puff shots on Z, the deuterium neutron yield is shown to scale as Yn ∼Im 4 , where Im is the peak current of the pinch. Theoretical estimates and numerical modeling of deuterium gas-puff implosions demonstrate that the yields of thermonuclear fusion neutrons that can be produced on ZR and the next-generation machines are sufficiently high to make PNS the most powerful, cost- and energy-efficient laboratory sources of 2.5-14 MeV fusion neutrons, just like plasma radiation sources are the most powerful sources of soft and keV x rays. In particular, the predicted deuterium-tritium thermal neutron-producing capability of PNS driven by the next-generation ZR and ZX accelerators is ∼5×1016 and ∼1018 , respectively. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
11. Neutron production and implosion characteristics of a deuterium gas-puff Z pinch.
- Author
-
Coverdale, C. A., Deeney, C., Velikovich, A. L., Clark, R. W., Chong, Y. K., Davis, J., Chittenden, J., Ruiz, C. L., Cooper, G. W., Nelson, A. J., Franklin, J., LePell, P. D., Apruzese, J. P., Levine, J., Banister, J., and Qi, N.
- Subjects
NEUTRONS ,DEUTERIUM ,MAGNETOHYDRODYNAMICS ,PLASMA gases ,ELECTRON temperature ,X-rays - Abstract
Experiments on the Z accelerator with deuterium gas puff implosions have produced up to 3.9×10
13 (±20%) neutrons at 2.34 MeV (±0.10 MeV). Experimentally, the mechanism for generating these neutrons has not been definitively identified through isotropy measurements, but activation diagnostics suggest multiple mechanisms may be responsible. One-, two-, and three-dimensional magnetohydrodynamic (MHD) calculations have indicated that thermonuclear outputs from Z could be expected to be in the (0.3–1.0)×1014 range. X-ray diagnostics of plasma conditions, fielded to look at dopant materials in the deuterium, have shown that the stagnated deuterium plasma achieved electron temperatures of 2.2 keV and ion densities of 2×1020 cm-3 , in agreement with the MHD calculations. [ABSTRACT FROM AUTHOR]- Published
- 2007
- Full Text
- View/download PDF
12. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions.
- Author
-
Slutz, S. A., Peterson, K. J., Vesey, R. A., Lemke, R. W., Bailey, J. E., Varnum, W., Ruiz, C. L., Cooper, G. W., Chandler, G. A., Rochau, G. A., and Mehlhorn, T. A.
- Subjects
INERTIAL confinement fusion ,SHOCK waves ,ELECTRON temperature ,BRIGHTNESS temperature ,PINCH effect (Physics) ,MATHEMATICAL models - Abstract
Simulations have been useful for improving the design of dynamic hohlraums for the purpose of imploding inertial fusion capsules [S. A. Slutz, J. E. Bailey, G. A. Chandler et al., Phys. Plasmas 10, 1875 (2003)]. These design changes, which have resulted in capsule implosions with hot dense cores [J. E. Bailey, G. A. Chandler, S. A. Slutz et al., Phys. Rev. Lett. 92, 085002 (2004)] and the production of thermonuclear neutrons [C. L. Ruiz, G. Cooper, S. A. Slutz et al., Phys. Rev. Lett. 93, 015001 (2005)], were based primarily on a series of one-dimensional numerical simulations, which treated the dynamic hohlraum and the capsule implosion separately. In this paper we present simulations which are fully integrated to include the implosion of wire arrays onto foam convertors, the implosion of the capsule imbedded in the foam, and the absorption of radiation into the electrodes. These simulations yield predictions that are in remarkably good agreement with measured values considering the complexity of the problem, which spans more than 100 ns of wire implosion with the subsequent capsule implosion on a few ns timescale. For example, the predicted neutron yields are less than a factor of 2 higher than the measured values, while the predicted shock velocity is about 30% higher than the measured value. The spectroscopically inferred imploded capsule gas core temperatures are somewhat lower than predicted by the simulations, while the gas densities are about a factor of 2 higher. Simulations indicate that a more slowly rising radiation drive temperature yields higher core densities and lower temperatures and thus better agreement with experimental measurements. Possible reasons for a more slowly rising radiation drive are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
13. X-ray flux from filtered arrays of detectors without unfolding.
- Author
-
Fehl, D. L., Stygar, W. A., Chandler, G. A., Cuneo, M. E., and Ruiz, C. L.
- Subjects
ELECTRIC equipment ,MAGNETIC flux compression ,SPECTRUM analysis ,INTEGRAL equations ,SPECTRAL sensitivity ,X-rays ,ELECTROMAGNETIC waves - Abstract
A simple computational method is proposed for estimating the time-dependent flux F
[ΔE] (t) of an x-ray spectrum S(E,t) over domain [ΔE] from data Dk (t)(k=1,...,N) obtained by an N-channel array of filtered detectors. It is assumed that the data are related to the spectrum by a discrete, inhomogeneous, first-kind Fredholm integral equation Dk =∫S(E,t)Rk (E)dE, where Rk (E) is the known response function for each detector channel of the diagnostic. The proposed method constructs a spectral sensitivity HLS (E) for the diagnostic array as a linear combination ∑k=1 N ak Rk (E) of the responses, where the coefficients ak are obtained by a least-squares criterion plus a constraint. The ak values, once determined, apply as long as the responses are valid. The flux estimate is then simply FLS (t)=∑k=1 N ak Dk (t), without a spectral unfold of the data. The method is useful for quick analyses of time-dependent data, for comparisons with other flux-measuring diagnostics, and for the experimental design of filtered-detector arrays. The method is applied to a five-channel array of filtered photoemissive x-ray detectors [G. A. Chandler et al., Rev. Sci. Instrum. 70, 561 (1999)], used for z-pinch measurements at the Z-accelerator facility [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. Comparisons with unfold results are made, and a first-order analysis of error propagation into FLS (t) is presented. [ABSTRACT FROM AUTHOR]- Published
- 2005
- Full Text
- View/download PDF
14. Progress in z-pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories.
- Author
-
Sanford, T W L, Nash, T J, Olson, R E, Bliss, D E, Lemke, R W, Olson, C L, Ruiz, C L, Mock, R C, Bailey, J E, Chandler, G A, Cuneo, M E, Leeper, R J, Matzen, M K, Mehlhorn, T A, Slutz, S A, Stygar, W A, Peterson, D L, Chrien, R E, Watt, R G, and Roderick, N F
- Published
- 2004
- Full Text
- View/download PDF
15. Dynamic hohlraum driven inertial fusion capsules.
- Author
-
Slutz, S. A., Bailey, J. E., Chandler, G. A., Bennett, G. R., Cooper, G., Lash, J. S., Lazier, S., Lake, P., Lemke, R. W., Mehlhorn, T. A., Nash, T. J., Nielson, D. S., McGurn, J., Moore, T. C., Ruiz, C. L., Schroen, D. G., Torres, J., Varnum, W., and Vesey, R. A.
- Subjects
PLASMA gases ,SHOCK waves - Abstract
A dynamic hohlraum is formed when an imploding annular cylindrical Z-pinch driven plasma collides with an internal low density convertor. This collision generates an inward traveling shock wave that emits x rays, which are trapped by the optically thick Z-pinch plasma and can be used to drive an inertial fusion capsule embedded in the convertor. This scheme has the potential to efficiently drive high yield capsules due to the close coupling between the intense radiation generation and the capsule. In prior dynamic hohlraum experiments [J. E. Bailey et al., Phys. Rev Lett. 89, 095004 (2002)] the convertor shock wave has been imaged with gated x-ray pinhole cameras. The shock emission was observed to be very circular and to be quite narrow in the radial direction. This implies that there is minimal Rayleigh-Taylor imprinting on the shock wave. Thus, the dominant source of radiation asymmetry is not random and in principle could be significantly decreased by proper design. Due to the closed geometry of the dynamic hohlraum, the most convenient way to diagnose the radiation symmetry is to image the x rays from the core of an imploded capsule. However, the core temperatures in the prior experiments were not high enough to obtain images. Using numerical simulations we have redesigned the dynamic hohlraum to obtain higher capsule core temperatures. This has enabled us to obtain x-ray pinhole images and Ar K-shell spectra from the imploded cores of 1.7-2.0 mm diameter CH-wall capsules filled with either D[SUB2] or CD[SUB4] and doped with a small amount of Ar. These capsules absorbed approximately 20 kJ of x-ray energy from the radiation drive, which peaked at a temperature of about 200 eV. Core temperatures of approximately 1 keV were inferred from the Ar spectrum. Our present understanding of the physics of dynamic hohlraums is presented along with our plans to improve this system. [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF
16. Dynamics and characteristics of a 215-eV dynamic-hohlraum x-ray source on Z.
- Author
-
Sanford, T. W. L., Lemke, R. W., Mock, R. C., Chandler, G. A., Leeper, R. J., Ruiz, C. L., Peterson, D. L., Chrien, R. E., Idzorek, G. C., Watt, R. G., and Chittenden, J. P.
- Subjects
X-rays ,PLASMA gases - Abstract
A radiation source has been developed on the 20-MA Z facility that produces a high-power x-ray pulse, generated in the axial direction primarily from the interior of a collapsing dynamic hohlraum (DH). The hohlraum is created from a solid cylindrical CH[sub 2] target centered within an imploding tungsten wire-array Z pinch. Analyses and interpretation of measurements made of the x-ray generation within and radiated from the hohlraum target have been done using radiation-magnetohydrodynamic-code simulations in the r-z plane that take account of the magnetic Rayleigh-Taylor (RT) instability. These analyses suggest that a significantly reduced RT seed (relative to that used to explain targetless Z-pinch data on Z) is required to explain the observations. Although some quantitative and qualitative agreement with the measurements is obtained with the reduced RT seed, differences remain. Initial attempts to include into the simulations a precursor plasma, arising from wire material driven ahead of the main implosion, did not ameliorate the differences. Modification of the simulated W/CH[sub 2] interface may be required to properly explain the measured axial radiation pulse. This pulse, which exits a 4.5-mm² hole centered above the target, begins ∼5 ns prior to stagnation (as defined by peak radial radiation power). The 5-ns interval leading to stagnation represents the duration when the imploding tungsten plasma acts as a hohlraum wall, trapping radiation within the interior of the foam target. The hohlraum radiation exiting the hole at 6 degrees to the z-axis reaches a maximum intensity of 3.1 ± 0.6 TW/str (associated with an average hohlraum temperature of 215 ± 10 eV), 1.4 ± 0.4 ns prior to stagnation. (The uncertainties represent rms shot-to-shot variations.) This radiation pulse, characterized here, is useful for performing radiation-transport experiments with drive temperatures in excess of 200 eV. [ABSTRACT FROM AUTHOR]
- Published
- 2002
- Full Text
- View/download PDF
17. Lithium beam generation and focusing with a radial diode on PBFAII.
- Author
-
Johnson, D. J., Rosenthal, S. E., Coats, R. S., Desjarlais, M. P., Lockner, T. R., Mehlhorn, T. A., Pointon, T. D., Ruiz, C. L., Stygar, W. A., Slutz, S. A., and Wenger, D. F.
- Published
- 1998
- Full Text
- View/download PDF
18. Target diagnostic system for the national ignition facility (invited)
- Author
-
Leeper, R. J., Chandler, G. A., Cooper, G. W., Derzon, M. S., Fehl, D. L., Hebron, D. E., Moats, A. R., Noack, D. D., Porter, J. L., Ruggles, L. E., Ruiz, C. L., Torres, J. A., Cable, M.D., Bell, P.M., Ciower, C. A., Hamreel, B. A., Kalantar, D. H., Karpenko, V. P., Kauffman, R. L., and Kilkenny, J.D.
- Subjects
LASERS in plasma diagnostics ,PLASMA diagnostics ,NUCLEAR research - Abstract
Presents an update on the progress of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) glass laser system. NIF system design requirements; Startup and laser validation of the NIF experimental plan; Laser characterization diagnostics; Capsule performance diagnostics.
- Published
- 1997
- Full Text
- View/download PDF
19. Intense ion beam diagnostics for particle beam fusion experiments on PBFA II (invited).
- Author
-
Leeper, R. J., Stygar, W. A., Maenchen, J., Ruiz, C. L., Kensek, R. P., Johnson, D. J., Lockner, T. R., Bailey, J., Cooper, G., Lee, J. R., Mehlhorn, T. A., Mix, L. P., and Stinnett, R. W.
- Subjects
PARTICLE beams ,PROTON beams ,LITHIUM - Abstract
A review of the diagnostics used at Sandia National Laboratories to measure the parameters of intense proton and lithium beams generated on the PBFA-II accelerator will be presented. These diagnostics consist of several types, namely: Kα x-ray pinhole cameras, a multiframe dE/dx ion pinhole camera, a p-i-n array ion pinhole camera, Thomson parabola spectrographs, a Rutherford magnetic spectrograph, plasma visible spectroscopy, and several nuclear activation diagnostics. These components, when taken together, enable a rather thorough description of the 5-MV, 10TW ion beams presently being produced. A unique feature of these diagnostics is that they are capable of operating in hard (several MeV) x-ray bremsstrahlung backgrounds of some 10[sup 9]-10[sup 10] rad/s. Details of each diagnostic, its integration, data reduction procedures, and recent PBFA-II data will be discussed. [ABSTRACT FROM AUTHOR]
- Published
- 1988
- Full Text
- View/download PDF
20. A technique for verifying the input response function of neutron time-of-flight scintillation detectors using cosmic rays.
- Author
-
Bonura, M. A., Ruiz, C. L., Fehl, D. L., Cooper, G. W., Chandler, G., Hahn, K. D., Nelson, A. J., Styron, J. D., and Torres, J. A.
- Subjects
- *
SCINTILLATION counters , *NEUTRON scattering , *TIME-of-flight mass spectrometry , *COSMIC rays , *PHOTOMULTIPLIERS - Abstract
An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF's) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
21. Calibration of direct nuclear activation diagnostics for measuring intense proton, lithium, and fluorine beams
- Author
-
Ruiz, C. L., Cooper, G. W., Chambers, G., and Schmidlapp, F. A.
- Subjects
- *
NUCLEAR activation analysis , *PLASMA diagnostics , *PARTICLE beams , *CALIBRATION - Abstract
Discusses the basic principles and calibration of direct nuclear activation diagnostics (DNAD) created to measure the hydrogen, lithium, carbon, and fluorine content of an intense lithium beam being developed at the Sandia National Laboratories in Albuquerque, New Mexico. Measurement of the energy fluence of a particular ion species; Requirements for a successful DNAD.
- Published
- 1997
- Full Text
- View/download PDF
22. Measurement of hydrogen and lithium ion energy densities on PBFA II using direct nuclear activation diagnostics
- Author
-
Ruiz, C. L., Cooper, G. W., Chambers, G., and Schmidlapp, F. A.
- Subjects
- *
NUCLEAR activation analysis , *PLASMA density , *PARTICLE beams , *PARTICLE accelerators , *IONS - Abstract
Describes a set of direct nuclear activation diagnostics that could measure the energy densities of the lithium and hydrogen ions in intense lithium beams being developed on the Particle Beam Fusion Accelerator II at the Sandia National Laboratories in Albuquerque, New Mexico. Principle of a direct nuclear activation diagnostic; Total hydrogen energy in the beam.
- Published
- 1997
- Full Text
- View/download PDF
23. Absolute calibration of a total yield indium activation detector for DD and DT neutrons.
- Author
-
Ruiz, C. L., Leeper, R. J., Schmidlapp, F. A., Cooper, G., and Malbrough, D. J.
- Subjects
- *
INDIUM , *NEUTRONS , *FUSION (Phase transformation) - Abstract
Progress in Z-pinch experiments at Sandia's Saturn facility have underscored a need for an absolute yield measurement for DD fusion neutrons. The technique chosen for making this absolute yield measurement was neutron activation of indium metal samples. To calibrate the technique, a 175-keV deuteron beam was allowed to impinge on a 3.0-µm-thick erbium deuteride target, producing neutrons through the ²H (d,n)³He fusion reaction. The neutron flux produced at 0° and incident on nominal 5-g indium samples was determined by the associated particle method. This method employed protons measured from the ²H(d,p)³H reaction to infer the neutron flux produced. After neutron irradiation, the activity of the indium samples was measured with a Ge gamma-ray detector. The total activity of the metastable state [sup 115m]In (336.23 keV) was measured, compared with the total incident flux, and a calibration factor (indium counts/neutron/gram of indium) determined. For completeness, a calibration factor for DT neutrons from the ³H(d,n)[sup 4]He fusion reaction was also obtained through the measured activity of the metastable state [sup 114m]In(190.29 keV). The experiment and the measured calibration factors for both reactions are described in the paper. [ABSTRACT FROM AUTHOR]
- Published
- 1992
- Full Text
- View/download PDF
24. Measurement of beam properties and reproducibility on recent PBFA II target shots.
- Author
-
Moats, A. R., Derzon, M. S., Johnson, D. J., Nelson, W. E., Pantuso, J. G., Ruiz, C. L., and Wenger, D. F.
- Subjects
PROTON beams ,PARTICLE beams ,ION bombardment - Abstract
Recent proton experiments on Particle Beam Fusion Accelerator II used a 2 µm gold foil cone to characterize the ion beam. Using the ion beam images obtained by viewing beam-induced characteristic line radiation emitted by such foils with time-integrated x-ray pinhole cameras, the beam centroid axial location and azimuthal symmetry have been analyzed for a recent series of target shots. Azimuthal symmetry on the target midplane on individual shots varied from 6% to 29%. Averaged over the entire series of shots, inferred intensities on the target midplane varied by 24% to 37% from quadrant to quadrant. The beam profiles and beam reproducibility are vital to the interpretation of the results of these target experiments. [ABSTRACT FROM AUTHOR]
- Published
- 1992
- Full Text
- View/download PDF
25. Calibration of CR-39 for detecting fusion neutrons.
- Author
-
Collopy, M. T., Carpenter, P., Harmon, C. D., Vandenberg, J., Cooper, G. W., Ruiz, C. L., Reyes, P., Stygar, W. A., Schmidlapp, A., Malbrough, D. J., and Becker, R.
- Subjects
NEUTRONS ,ELECTROSTATIC accelerators - Abstract
We have measured the efficiency (tracks per incident neutron) of pure CR-39 for detecting DD and DT neutrons. Neutrons having average energies of 2.9 MeV (DD) and 14.8 MeV (DT) were produced by a 200-keV electrostatic accelerator and the neutron yields were measured using the associated particle counting technique. All CR-39 samples irradiated by DD or DT neutrons were etched for 2 h in a 70°, 6.25-N NaOH bath. For bare CR-39, the efficiencies for detecting 2.9- and 14.8-MeV neutrons were found to be (1.3±0.4)×10[sup -4] and (5.0±1.8) × 10[sup -5], respectively. We also investigated using CR-39 and polyimide as proton radiators. For detecting 2.9-MeV neutrons, the radiators had no significant effect on efficiency; but for detecting 14.8-MeV neutrons the polyimide radiator increased the efficiency to (7.8±2.8) × 10[sup -5]. [ABSTRACT FROM AUTHOR]
- Published
- 1992
- Full Text
- View/download PDF
26. Lithium fluoride ion source experiments on PBFA II.
- Author
-
Bieg, K. W., Pregenzer, A. L., Woodworth, J. R., Lockner, T. R., Johnson, D. J., Gerber, R. A., Bailey, J. E., Kensek, R. P., Leeper, R. J., Maenchen, J. E., Mehlhorn, T. A., Olson, R. E., Ruiz, C. L., and Stygar, W. A.
- Subjects
ION sources ,LITHIUM compounds ,FLUORIDES ,INERTIAL confinement fusion - Abstract
Lithium fluoride, field-enhanced ion source experiments are being performed on PBFA II. The source consists of a thin coating of LiF on a microscopically rough substrate. Diagnostics to measure ion beam energy, purity, and transport include electrical monitors, Faraday cups, nuclear activation, ion pinhole camera, Rutherford magnetic spectrograph, and shadowbox aperture array. With PBFA II operating at three-quarters energy, the source has produced 16 TW of ion power and 550 kJ of ion energy with 70% diode efficiency. Over 26 kJ of lithium beam energy has been focused to the diode center axis with a peak energy density of about 1.3 kJ/cm². PICDIAG simulations of the lithium focus indicate the intrinsic source divergence is about 45 mrad with a 20-µm-grade porous stainless-steel substrate. [ABSTRACT FROM AUTHOR]
- Published
- 1990
- Full Text
- View/download PDF
27. Simulation and interpretation of ion beam diagnostics on PBFA-II.
- Author
-
Mehlhorn, T. A., Nelson, W. E., Maenchen, J. E., Stygar, W. A., Ruiz, C. L., Lockner, T. R., and Johnson, D. J.
- Subjects
CAMERAS ,MAGNETIC spectrometer ,ION bombardment ,SCIENTIFIC apparatus & instruments - Abstract
Ion diode and beam focusing experiments are in progress on PBFA-II working toward an ultimate goal of significant burn of an ICF pellet. Beam diagnostics on these experiments include a Thomson parabola, Kα x-ray pinhole cameras, filtered ion pinhole cameras, and a magnetic spectrometer. We are developing two new computer programs to simulate and interpret, the data obtained from these diagnostics. VIDA is a VAX-based program that manipulates and unfolds data from digitized particle and x-ray diagnostic images. VIDA operations include: image display, background substraction, relative-to-absolute coordinate transformations, and image projection into the beam reference frame. PICDIAG allows us to study the effects of time-dependent ion focusing on the performance of ion beam diagnostics. [ABSTRACT FROM AUTHOR]
- Published
- 1988
- Full Text
- View/download PDF
28. Basis set expansion for inverse problems in plasma diagnostic analysis.
- Author
-
Jones, B. and Ruiz, C. L.
- Subjects
- *
PLASMA radiation , *PLASMA sources , *NEUTRONS , *TIME-of-flight measurements , *Z-pinch , *SPECTRAL energy distribution - Abstract
A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
29. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activation.
- Author
-
Ruiz, C. L., Chandler, G. A., Cooper, G. W., Fehl, D. L., Hahn, K. D., Leeper, R. J., McWatters, B. R., Nelson, A. J., Smelser, R. M., Snow, C. S., and Torres, J. A.
- Subjects
- *
DEUTERIUM , *CALIBRATION , *TRITIUM , *NEUTRONS , *NEUTRON flux , *COPPER , *NUCLEAR activation analysis , *ION bombardment , *COCKROFT-Walton accelerator - Abstract
The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the 63Cu(n,2n)62Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)4He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced 62Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
30. Calibration of neutron-yield diagnostics in attenuating and scattering environments.
- Author
-
Hahn, K. D., Ruiz, C. L., Cooper, G. W., Nelson, A. J., Chandler, G. A., Leeper, R. J., McWatters, B. R., Smelser, R. M., and Torres, J. A.
- Subjects
- *
CALIBRATION , *NEUTRON scattering , *ATTENUATION (Physics) , *NUCLEAR fusion , *MONTE Carlo method , *PERFORMANCE evaluation - Abstract
We have performed absolute calibrations of a fusion-neutron-yield copper-activation diagnostic in environments that significantly attenuate and scatter neutrons. We have measured attenuation and scattering effects and have compared the measurements to Monte Carlo simulations using the Monte Carlo N-Particle code. We find that measurements and simulations are consistent within 10%. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
31. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited).
- Author
-
Nelson, A. J., Ruiz, C. L., Cooper, G. W., Chandler, G. A., Fehl, D. L., Hahn, K. D., Leeper, R. J., Smelser, R., and Torres, J. A.
- Subjects
- *
MATHEMATICAL models , *TIME-of-flight measurements , *INERTIAL confinement fusion , *PHYSICS experiments , *NEUTRON scattering , *NUCLEAR counters - Abstract
A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
32. Copper activation deuterium-tritium neutron yield measurements at the National Ignition Facility.
- Author
-
Cooper, G. W., Ruiz, C. L., Leeper, R. J., Chandler, G. A., Hahn, K. D., Nelson, A. J., Torres, J. A., Smelser, R. M., McWatters, B. R., Bleuel, D. L., Yeamans, C. B., Knittel, K. M., Casey, D. T., Frenje, J. A., Gatu Johnson, M., Petrasso, R. D., and Styron, J. D.
- Subjects
- *
NUCLEAR activation analysis , *COPPER , *DEUTERIUM , *NUCLEAR facilities , *PLASMA diagnostics , *NUCLEAR reactions , *ANISOTROPY - Abstract
A DT neutron yield diagnostic based on the reactions, 63Cu(n,2n)62Cu(β+) and 65Cu(n,2n) 64 Cu(β+), has been fielded at the National Ignition Facility (NIF). The induced copper activity is measured using a NaI γ-γ coincidence system. Uncertainties in the 14-MeV DT yield measurements are on the order of 7% to 8%. In addition to measuring yield, the ratio of activities induced in two, well-separated copper samples are used to measure the relative anisotropy of the fuel ρR to uncertainties as low as 5%. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
33. Neutron activation diagnostics at the National Ignition Facility (invited).
- Author
-
Bleuel, D. L., Yeamans, C. B., Bernstein, L. A., Bionta, R. M., Caggiano, J. A., Casey, D. T., Cooper, G. W., Drury, O. B., Frenje, J. A., Hagmann, C. A., Hatarik, R., Knauer, J. P., Johnson, M. Gatu, Knittel, K. M., Leeper, R. J., McNaney, J. M., Moran, M., Ruiz, C. L., and Schneider, D. H. G.
- Subjects
NUCLEAR activation analysis ,PLASMA diagnostics ,NUCLEAR facilities ,NUCLEAR fusion ,NUCLEAR energy ,PLASMA density ,ANISOTROPY - Abstract
Neutron yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation diagnostics. Neutrons interact with materials whose reaction cross sections threshold just below the fusion neutron production energy, providing an accurate measure of primary unscattered neutrons without contribution from lower-energy scattered neutrons. Indium samples are mounted on diagnostic instrument manipulators in the NIF target chamber, 25-50 cm from the source, to measure 2.45 MeV deuterium-deuterium fusion neutrons through the 115In(n,n')115m In reaction. Outside the chamber, zirconium and copper are used to measure 14 MeV deuterium-tritium fusion neutrons via 90Zr(n,2n), 63Cu(n,2n), and 65Cu(n,2n) reactions. An array of 16 zirconium samples are located on port covers around the chamber to measure relative yield anisotropies, providing a global map of fuel areal density variation. Neutron yields are routinely measured with activation to an accuracy of 7% and are in excellent agreement both with each other and with neutron time-of-flight and magnetic recoil spectrometer measurements. Relative areal density anisotropies can be measured to a precision of less than 3%. These measurements reveal apparent bulk fuel velocities as high as 200 km/s in addition to large areal density variations between the pole and equator of the compressed fuel. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
34. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF.
- Author
-
Sinenian, N., Manuel, M. J.-E., Zylstra, A. B., Rosenberg, M., Waugh, C. J., Rinderknecht, H. G., Casey, D. T., Sio, H., Ruszczynski, J. K., Zhou, L., Johnson, M. Gatu, Frenje, J. A., Séguin, F. H., Li, C. K., Petrasso, R. D., Ruiz, C. L., and Leeper, R. J.
- Subjects
ION accelerators ,LINEAR accelerators ,ION sources ,NEUTRONS ,ELECTRONIC systems - Abstract
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D3He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 107 s-1 and 106 s-1 for DD and D3He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
35. ZR neutron diagnostic suite.
- Author
-
Leeper, R. J., Ruiz, C. L., Chandler, G. A., Cooper, G. W., Bower, D. E., Fittinghoff, D. N., Hagen, E. C., Hollaway, J. R., McKenna, I. J., McPherson, L. A., May, M. J., Meeham, B. T., Nelson, A. J., Perry, T. S., Porter, J. L., Robbins, L. L., Sinars, D. B., Torres, J. A., and Ziegler, L. H.
- Published
- 2008
- Full Text
- View/download PDF
36. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies.
- Author
-
Mehlhorn, T. A., Bailey, J. E., Bennett, G., Chandler, G. A., Cooper, G., Cuneo, M. E., Golovkin, I., Hanson, D. L., Leeper, R. J., MacFarlane, J. J., Mancini, R. C., Matzen, M. K., Nash, T. J., Olson, C. L., Porter, J. L., Ruiz, C. L., Schroen, D. G., Slutz, S. A., Varnum, W., and Vesey, R. A.
- Published
- 2003
- Full Text
- View/download PDF
37. Characterization of axially directed x rays generated from a target within a high-power z-pinch (abstract).
- Author
-
Sanford, T. W. L., Bailey, J. E., Chandler, G. A., Cuneo, M. E., Fehl, D. L., Hebron, D. E., Leeper, R. J., Lemke, R. W., Mock, R. C., Olson, R. E., Nash, T. J., Porter, J. L., Ruggles, L. E., Ruiz, C. L., Simpson, W. W., Struve, K. W., Stygar, W. A., Bowers, R. L., Chrien, R. E., and Idzorek, G.C.
- Subjects
X-rays ,PINCH effect (Physics) ,PLASMA diagnostics - Abstract
X-ray powers on the order of 10 TW over an area of 4.5 mm2 are produced in the axial direction from the compression of a low-density foam target centered within a z-pinch on the Z generator.1 The x rays from this source are used for high-energy–density physics experiments, including the heating of hohlraums for inertial confinements fusion studies.2 In this article, detailed characteristics of this radiation source measured using an upgraded axial-radiation-diagnostic suite3 together with other on- and off-axis diagnostics are summarized and discussed in terms of Eulerian and Lagrangian radiation–magnetohydrodynamic code simulations. The source, characterized here, employs a nested array of 10-mm-long tungsten wires, at radii of 20 and 10 mm, having a total masses of 2 and 1 mg, and wire numbers of 240 and 120, respectively. The target is a 14 mg/cc CH[sub 2] foam cylinder of 5 mm diameter. The codes take into account the development of the Rayleigh–Taylor instability in the r–z plane, and provide integrated calculations of the implosion together with the x-ray generation. The radiation exiting the imploding target through the 4.5 mm2 aperture is measured primarily by the axial diagnostic suite that now includes diagnostics at an angle of ∼30° to the z axis. The near on-axis diagnostics include: (1) a seven-element filtered silicon-diode array,4 (2) a five-element filtered x-ray diffraction (XRD) array,5 (3) a six-element filtered PCD array,6 (4) a three-element bolometer,7 (5) time-resolved and time-integrating crystal spectrometers, and (6) two fast-framing x-ray pinhole cameras having 11 frames each. The filtered silicon diodes, XRDs, and PCDs are sensitive to 1–200, 140–2300, and 1000–4000 eV x rays, respectively. They (1) establish the magnitude of the prepluse generated during the run in of the imploding wire arrays, (2) measure the Planckian nature of the dominant thermal, and (3) nontherm... [ABSTRACT FROM AUTHOR]
- Published
- 2001
- Full Text
- View/download PDF
38. Results of beam characterization measurements on PBFA II (abstract).
- Author
-
Derzon, M. S., Bailey, J. E., Chandler, G. A., Johnson, D. J., Maenchen, J., Matzen, M. K., McGuire, E. J., Mehlhorn, T. A., Nelson, W. E., Pantuso, J. A., Rockett, P. D., Ruiz, C. L., Schmidlapp, A., Smith, T., Stygar, W. A., Torres, J. A., and Wiemann, D. K.
- Subjects
ION bombardment ,CALORIMETERS ,PHYSICS instruments - Abstract
Recent experiments were performed at PBFA II to characterize the ion beam on-axis. The targets were comprised of two parts. One was a conical gold foil whose beam-induced fluorescence was used to obtain a beam footprint and a measurement of beam voltage. The gold also served as a Rutherford scattering source for an ion pinhole camera. The other part was an on-axis Li cylinder, contained within the gold cone, whose gamma output was used as a beam calorimeter. We present the results of this data. [ABSTRACT FROM AUTHOR]
- Published
- 1990
- Full Text
- View/download PDF
39. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Allen A, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Archuleta TN, Arend M, Arnold P, Arnold T, Arsenlis A, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AAS, Aybar N, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger RL, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Boyle D, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs R, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman TD, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christiansen NS, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins GW, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Danly C, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Do A, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, Drury O, DuBois DF, DuBois PF, Dunham G, Durocher M, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Fehrenbach T, Feit M, Felker B, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geddes CGR, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani FR, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Higginson DP, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins LF, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Ivanovich I, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Krauland CM, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kur E, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lagin L, Lahmann B, Lairson B, Landen OL, Land T, Lane M, Laney D, Langdon AB, Langenbrunner J, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Manuel MJ, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez JI, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora RC, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Oesterle AL, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedretti A, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phillion D, Phipps TJ, Piceno E, Pickworth L, Ping Y, Pino J, Piston K, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo PW, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen MD, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmit PF, Smidt JM, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Smith R, Schölmerich M, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanley J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CH, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Stutz J, Summers L, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Wharton KB, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmann K, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff PJ, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Yu J, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.
- Published
- 2024
- Full Text
- View/download PDF
40. Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Arend M, Arnold P, Arnold T, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AS, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger R, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman T, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins G, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, DuBois DF, DuBois PF, Dunham G, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Feit M, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani F, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins L, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lahmann B, Lairson B, Landen OL, Langenbrunner J, Lagin L, Land T, Lane M, Laney D, Langdon AB, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal C, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora R, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phipps TJ, Piceno E, Ping Y, Pickworth L, Pino J, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo P, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen M, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmitt MJ, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schölmerich M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CB, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Widmann K, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff J, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.
- Published
- 2022
- Full Text
- View/download PDF
41. Performance Scaling in Magnetized Liner Inertial Fusion Experiments.
- Author
-
Gomez MR, Slutz SA, Jennings CA, Ampleford DJ, Weis MR, Myers CE, Yager-Elorriaga DA, Hahn KD, Hansen SB, Harding EC, Harvey-Thompson AJ, Lamppa DC, Mangan M, Knapp PF, Awe TJ, Chandler GA, Cooper GW, Fein JR, Geissel M, Glinsky ME, Lewis WE, Ruiz CL, Ruiz DE, Savage ME, Schmit PF, Smith IC, Styron JD, Porter JL, Jones B, Mattsson TR, Peterson KJ, Rochau GA, and Sinars DB
- Abstract
We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×10^{13} (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.
- Published
- 2020
- Full Text
- View/download PDF
42. Average neutron time-of-flight instrument response function inferred from single D-T neutron events within a plastic scintillator.
- Author
-
Styron JD, Ruiz CL, Hahn KD, Cooper GW, Chandler GA, Jones B, McWatters BR, Forrest CJ, Vaughan J, Torres J, Pelka S, Smith J, and Weaver C
- Abstract
The apparent ion temperature and neutron-reaction history are important characteristics of a fusion plasma. Extracting these quantities from a measured neutron-time-of-flight signal requires accurate knowledge of the instrument response function (IRF). This work describes a novel method for obtaining the IRF directly for single DT neutron interactions by utilizing n-alpha coincidence. The t(d,α)n nuclear reaction was produced at Sandia National Laboratories' Ion Beam Laboratory using a 300 keV Cockcroft-Walton generator to accelerate a 2.5 μ A beam of 175 keV D
+ ions into a stationary ErT2 target. The average neutron IRF was calculated by taking a time-corrected average of individual neutron events within an EJ-228 plastic scintillator. The scintillator was coupled to two independent photo-multiplier tubes operated in the current mode: a Hamamatsu 5946 mod-5 and a Photek PMT240. The experimental setup and results will be discussed.- Published
- 2018
- Full Text
- View/download PDF
43. Modeling the one-dimensional imager of neutrons (ODIN) for neutron response functions at the Sandia Z facility.
- Author
-
Vaughan JD, Ruiz CL, Fittinghoff D, May MJ, Ampleford DJ, Cooper GW, Chandler GA, Hahn K, Styron JD, McWatters BR, Torres J, Maurer AJ, and Jones B
- Abstract
The one-dimensional imager of neutrons (ODIN) at the Sandia Z facility consists of a 10-cm block of tungsten with rolled edges, creating a slit imager with slit widths of either 250, 500, or 750 μ m. Designed with a 1-m neutron imaging line of sight, we achieve about 4:1 magnification and 500- μ m axial spatial resolution. The baseline inertial confinement fusion concept at Sandia is magnetized liner inertial fusion, which nominally creates a 1-cm line source of neutrons. ODIN was designed to determine the size, shape, and location of the neutron producing region, furthering the understanding of compression quality along the cylindrical axis of magnetized liner implosions. Challenges include discriminating neutrons from hard x-rays and gammas with adequate signal-to-noise in the 2 × 10
12 deuterium-deuterium (DD) neutron yield range, as well as understanding the point spread function of the imager to various imaging detectors (namely, CR-39). Modeling efforts were conducted with MCNP6.1 to determine neutron response functions for varying configurations in a clean DD neutron environment (without x-rays or gammas). Configuration alterations that will be shown include rolled-edge slit orientation and slit width, affecting the resolution and response function. Finally, the experiment to determine CR-39 neutron sensitivity, with and without a high density polyethylene (n, p) converter, an edge spread function, and resolution will be discussed.- Published
- 2018
- Full Text
- View/download PDF
44. Superlinearity, saturation, and the PMT-Tailoring and calibration methodology for prompt radiation detectors.
- Author
-
Buckles RA, Garza I, Bellow JN, Moy KJ, Chandler GA, Ruiz CL, and Jones BM
- Abstract
This work illustrates predominant measureable nonlinearities in photomultiplier tubes (PMTs) and introduces a controllable one called "Superlinearity," signifying both a positive nonlinear response and the ability to extend linear operation by counteracting gain saturation mechanisms - charge depletion, space-charge field limitation, and secondary emission surface effects. Recognizing superlinearity and its effect on the temporal step response leads to a true definition of linearity, free of a small-signal linear assumption. Furthermore, given the prevalent use of glass microchannel-plate (MCP) PMTs in favor of a faster impulse response in spite of a small charge limit, we are motivated to examine their nonlinear amplitude response and deploy tailored gain bias string methods to fully harness the maximum linear gain as is usually done for transmissive metal mesh and reflective metal dynode PMTs. Our characterization methodology applies standard NIST-traceable calibrated laboratory equipment with absolute input-referenced techniques, examining step responses over many orders of magnitude in controlled illumination. By doing so, we quantitatively reveal the superlinearity strength independent of charge depletion, yielding true linear responsivity and effectively doubling the small-signal linear limit; this is very relevant to PMT modeling and charge deconvolution efforts. With further development, the tailoring strategies we introduce could be applied to MCP detectors, extracting all useful capillary charge with a significant improvement in large linear signal quality.
- Published
- 2018
- Full Text
- View/download PDF
45. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion.
- Author
-
Gomez MR, Slutz SA, Sefkow AB, Sinars DB, Hahn KD, Hansen SB, Harding EC, Knapp PF, Schmit PF, Jennings CA, Awe TJ, Geissel M, Rovang DC, Chandler GA, Cooper GW, Cuneo ME, Harvey-Thompson AJ, Herrmann MC, Hess MH, Johns O, Lamppa DC, Martin MR, McBride RD, Peterson KJ, Porter JL, Robertson GK, Rochau GA, Ruiz CL, Savage ME, Smith IC, Stygar WA, and Vesey RA
- Abstract
This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2).
- Published
- 2014
- Full Text
- View/download PDF
46. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.
- Author
-
Schmit PF, Knapp PF, Hansen SB, Gomez MR, Hahn KD, Sinars DB, Peterson KJ, Slutz SA, Sefkow AB, Awe TJ, Harding E, Jennings CA, Chandler GA, Cooper GW, Cuneo ME, Geissel M, Harvey-Thompson AJ, Herrmann MC, Hess MH, Johns O, Lamppa DC, Martin MR, McBride RD, Porter JL, Robertson GK, Rochau GA, Rovang DC, Ruiz CL, Savage ME, Smith IC, Stygar WA, and Vesey RA
- Abstract
Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.
- Published
- 2014
- Full Text
- View/download PDF
47. Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited).
- Author
-
Gatu Johnson M, Frenje JA, Casey DT, Li CK, Séguin FH, Petrasso R, Ashabranner R, Bionta RM, Bleuel DL, Bond EJ, Caggiano JA, Carpenter A, Cerjan CJ, Clancy TJ, Doeppner T, Eckart MJ, Edwards MJ, Friedrich S, Glenzer SH, Haan SW, Hartouni EP, Hatarik R, Hatchett SP, Jones OS, Kyrala G, Le Pape S, Lerche RA, Landen OL, Ma T, MacKinnon AJ, McKernan MA, Moran MJ, Moses E, Munro DH, McNaney J, Park HS, Ralph J, Remington B, Rygg JR, Sepke SM, Smalyuk V, Spears B, Springer PT, Yeamans CB, Farrell M, Jasion D, Kilkenny JD, Nikroo A, Paguio R, Knauer JP, Glebov VY, Sangster TC, Betti R, Stoeckl C, Magoon J, Shoup MJ 3rd, Grim GP, Kline J, Morgan GL, Murphy TJ, Leeper RJ, Ruiz CL, Cooper GW, and Nelson AJ
- Abstract
DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.
- Published
- 2012
- Full Text
- View/download PDF
48. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.
- Author
-
Casey DT, Frenje JA, Gatu Johnson M, Séguin FH, Li CK, Petrasso RD, Glebov VY, Katz J, Knauer JP, Meyerhofer DD, Sangster TC, Bionta RM, Bleuel DL, Döppner T, Glenzer S, Hartouni E, Hatchett SP, Le Pape S, Ma T, MacKinnon A, McKernan MA, Moran M, Moses E, Park HS, Ralph J, Remington BA, Smalyuk V, Yeamans CB, Kline J, Kyrala G, Chandler GA, Leeper RJ, Ruiz CL, Cooper GW, Nelson AJ, Fletcher K, Kilkenny J, Farrell M, Jasion D, and Paguio R
- Abstract
A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
- Published
- 2012
- Full Text
- View/download PDF
49. Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions.
- Author
-
Mackinnon AJ, Kline JL, Dixit SN, Glenzer SH, Edwards MJ, Callahan DA, Meezan NB, Haan SW, Kilkenny JD, Döppner T, Farley DR, Moody JD, Ralph JE, MacGowan BJ, Landen OL, Robey HF, Boehly TR, Celliers PM, Eggert JH, Krauter K, Frieders G, Ross GF, Hicks DG, Olson RE, Weber SV, Spears BK, Salmonsen JD, Michel P, Divol L, Hammel B, Thomas CA, Clark DS, Jones OS, Springer PT, Cerjan CJ, Collins GW, Glebov VY, Knauer JP, Sangster C, Stoeckl C, McKenty P, McNaney JM, Leeper RJ, Ruiz CL, Cooper GW, Nelson AG, Chandler GG, Hahn KD, Moran MJ, Schneider MB, Palmer NE, Bionta RM, Hartouni EP, LePape S, Patel PK, Izumi N, Tommasini R, Bond EJ, Caggiano JA, Hatarik R, Grim GP, Merrill FE, Fittinghoff DN, Guler N, Drury O, Wilson DC, Herrmann HW, Stoeffl W, Casey DT, Johnson MG, Frenje JA, Petrasso RD, Zylestra A, Rinderknecht H, Kalantar DH, Dzenitis JM, Di Nicola P, Eder DC, Courdin WH, Gururangan G, Burkhart SC, Friedrich S, Blueuel DL, Bernstein LA, Eckart MJ, Munro DH, Hatchett SP, Macphee AG, Edgell DH, Bradley DK, Bell PM, Glenn SM, Simanovskaia N, Barrios MA, Benedetti R, Kyrala GA, Town RP, Dewald EL, Milovich JL, Widmann K, Moore AS, LaCaille G, Regan SP, Suter LJ, Felker B, Ashabranner RC, Jackson MC, Prasad R, Richardson MJ, Kohut TR, Datte PS, Krauter GW, Klingman JJ, Burr RF, Land TA, Hermann MR, Latray DA, Saunders RL, Weaver S, Cohen SJ, Berzins L, Brass SG, Palma ES, Lowe-Webb RR, McHalle GN, Arnold PA, Lagin LJ, Marshall CD, Brunton GK, Mathisen DG, Wood RD, Cox JR, Ehrlich RB, Knittel KM, Bowers MW, Zacharias RA, Young BK, Holder JP, Kimbrough JR, Ma T, La Fortune KN, Widmayer CC, Shaw MJ, Erbert GV, Jancaitis KS, DiNicola JM, Orth C, Heestand G, Kirkwood R, Haynam C, Wegner PJ, Whitman PK, Hamza A, Dzenitis EG, Wallace RJ, Bhandarkar SD, Parham TG, Dylla-Spears R, Mapoles ER, Kozioziemski BJ, Sater JD, Walters CF, Haid BJ, Fair J, Nikroo A, Giraldez E, Moreno K, Vanwonterghem B, Kauffman RL, Batha S, Larson DW, Fortner RJ, Schneider DH, Lindl JD, Patterson RW, Atherton LJ, and Moses EI
- Abstract
The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 μm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).
- Published
- 2012
- Full Text
- View/download PDF
50. Hot dense capsule-implosion cores produced by Z-pinch dynamic Hohlraum radiation.
- Author
-
Bailey JE, Chandler GA, Slutz SA, Golovkin I, Lake PW, MacFarlane JJ, Mancini RC, Burris-Mog TJ, Cooper G, Leeper RJ, Mehlhorn TA, Moore TC, Nash TJ, Nielsen DS, Ruiz CL, Schroen DG, and Varnum WA
- Abstract
Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately 1-4 x 10(23) cm(-3) electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak emission values of T(e), n(e), and symmetry, indicating reasonable understanding of the Hohlraum and implosion physics.
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.