1. Electronic instability in a zero-gap semiconductor: the charge-density wave in (TaSe4)2I.
- Author
-
Tournier-Colletta C, Moreschini L, Autès G, Moser S, Crepaldi A, Berger H, Walter AL, Kim KS, Bostwick A, Monceau P, Rotenberg E, Yazyev OV, and Grioni M
- Abstract
We report a comprehensive study of the paradigmatic quasi-1D compound (TaSe(4))(2)I performed by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations. We find it to be a zero-gap semiconductor in the nondistorted structure, with non-negligible interchain coupling. Theory and experiment support a Peierls-like scenario for the charge-density wave formation below T(CDW)=263 K, where the incommensurability is a direct consequence of the finite interchain coupling. The formation of small polarons, strongly suggested by the ARPES data, explains the puzzling semiconductor-to-semiconductor transition observed in transport at T(CDW).
- Published
- 2013
- Full Text
- View/download PDF