1. Dynamic Fractional Resource Scheduling versus Batch Scheduling
- Author
-
Henri Casanova, Frédéric Vivien, Mark Stillwell, Applied Mathematics and Computing Group (AMAC), Cranfield University, Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Optimisation des ressources : modèles, algorithmes et ordonnancement (ROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Information and Computer Sciences [Hawaii] (ICS), University of Hawai‘i [Mānoa] (UHM), Associate-team ALOHA, École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
Rate-monotonic scheduling ,Job scheduler ,Earliest deadline first scheduling ,Schedule ,Least slack time scheduling ,Computer science ,Distributed computing ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Scheduling (production processes) ,Processor scheduling ,0102 computer and information sciences ,02 engineering and technology ,Dynamic priority scheduling ,computer.software_genre ,scheduler ,01 natural sciences ,Fair-share scheduling ,Scheduling (computing) ,Fixed-priority pre-emptive scheduling ,Genetic algorithm scheduling ,vector bin packing ,Computer cluster ,Lottery scheduling ,0202 electrical engineering, electronic engineering, information engineering ,Resource management ,Index Terms-cluster ,Job shop scheduling ,Flow shop scheduling ,Round-robin scheduling ,batch scheduling ✦ ,Stride scheduling ,Deadline-monotonic scheduling ,high performance computing ,Portable Batch System ,Computational Theory and Mathematics ,010201 computation theory & mathematics ,Hardware and Architecture ,Two-level scheduling ,Signal Processing ,virtual machine ,Resource allocation ,020201 artificial intelligence & image processing ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Heuristics ,computer - Abstract
International audience; We propose a novel job scheduling approach for homogeneous cluster computing platforms. Its key feature is the use of virtual machine technology to share fractional node resources in a precise and controlled manner. Other VM-based scheduling approaches have focused primarily on technical issues or extensions to existing batch scheduling systems, while we take a more aggressive approach and seek to find heuristics that maximize an objective metric correlated with job performance. We derive absolute performance bounds and develop algorithms for the online, non-clairvoyant version of our scheduling problem. We further evaluate these algorithms in simulation against both synthetic and real-world HPC workloads and compare our algorithms to standard batch scheduling approaches. We find that our approach improves over batch scheduling by orders of magnitude in terms of job stretch, while leading to comparable or better resource utilization. Our results demonstrate that virtualization technology coupled with lightweight online scheduling strategies can afford dramatic improvements in performance for executing HPC workloads.
- Published
- 2012