Back to Search Start Over

Dynamic Fractional Resource Scheduling versus Batch Scheduling

Authors :
Henri Casanova
Frédéric Vivien
Mark Stillwell
Applied Mathematics and Computing Group (AMAC)
Cranfield University
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Optimisation des ressources : modèles, algorithmes et ordonnancement (ROMA)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Information and Computer Sciences [Hawaii] (ICS)
University of Hawai‘i [Mānoa] (UHM)
Associate-team ALOHA
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Source :
IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers, 2012, 23 (3), pp.521-529. ⟨10.1109/TPDS.2011.183⟩, IEEE Transactions on Parallel and Distributed Systems, 2012, 23 (3), pp.521-529. ⟨10.1109/TPDS.2011.183⟩
Publication Year :
2012
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2012.

Abstract

International audience; We propose a novel job scheduling approach for homogeneous cluster computing platforms. Its key feature is the use of virtual machine technology to share fractional node resources in a precise and controlled manner. Other VM-based scheduling approaches have focused primarily on technical issues or extensions to existing batch scheduling systems, while we take a more aggressive approach and seek to find heuristics that maximize an objective metric correlated with job performance. We derive absolute performance bounds and develop algorithms for the online, non-clairvoyant version of our scheduling problem. We further evaluate these algorithms in simulation against both synthetic and real-world HPC workloads and compare our algorithms to standard batch scheduling approaches. We find that our approach improves over batch scheduling by orders of magnitude in terms of job stretch, while leading to comparable or better resource utilization. Our results demonstrate that virtualization technology coupled with lightweight online scheduling strategies can afford dramatic improvements in performance for executing HPC workloads.

Details

ISSN :
10459219
Volume :
23
Database :
OpenAIRE
Journal :
IEEE Transactions on Parallel and Distributed Systems
Accession number :
edsair.doi.dedup.....2c16ca5a64cca99b850d42ae0dad0d2d