1. The State of the Art in Integer Factoring and Breaking Public-Key Cryptography
- Author
-
Boudot, Fabrice, Gaudry, Pierrick, Guillevic, Aurore, Heninger, Nadia, Thomé, Emmanuel, Zimmermann, Paul, XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Cryptology, arithmetic : algebraic methods for better algorithms (CARAMBA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Department of Computer Science and Engineering [Univ California San Diego] (CSE - UC San Diego), University of California [San Diego] (UC San Diego), and University of California (UC)-University of California (UC)
- Subjects
[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] ,Computer Networks and Communications ,Electrical and Electronic Engineering ,Law ,Computer Science::Cryptography and Security - Abstract
International audience; The security of essentially all public-key cryptography currently in common use today is based on the presumed computational hardness of three number-theoretic problems: integer factoring (required for the security of RSA encryption and digital signatures), discrete logarithms in finite fields (required for Diffie-Hellman key exchange and the DSA digital signature algorithm), and discrete logarithms over elliptic curves (required for elliptic curve Diffie-Hellman and ECDSA, Ed25519, and other elliptic curve digital signature algorithms).In this column, we will review the current state of the art of cryptanalysis for these problems using classical (non-quantum) computers, including in particular our most recent computational records for integer factoring and prime field discrete logarithms.
- Published
- 2022