Back to Search Start Over

The State of the Art in Integer Factoring and Breaking Public-Key Cryptography

Authors :
Boudot, Fabrice
Gaudry, Pierrick
Guillevic, Aurore
Heninger, Nadia
Thomé, Emmanuel
Zimmermann, Paul
XLIM (XLIM)
Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)
Cryptology, arithmetic : algebraic methods for better algorithms (CARAMBA)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Algorithms, Computation, Image and Geometry (LORIA - ALGO)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Department of Computer Science and Engineering [Univ California San Diego] (CSE - UC San Diego)
University of California [San Diego] (UC San Diego)
University of California (UC)-University of California (UC)
Source :
IEEE Security and Privacy Magazine, IEEE Security and Privacy Magazine, 2022, 20 (2), pp.80-86. ⟨10.1109/MSEC.2022.3141918⟩
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

International audience; The security of essentially all public-key cryptography currently in common use today is based on the presumed computational hardness of three number-theoretic problems: integer factoring (required for the security of RSA encryption and digital signatures), discrete logarithms in finite fields (required for Diffie-Hellman key exchange and the DSA digital signature algorithm), and discrete logarithms over elliptic curves (required for elliptic curve Diffie-Hellman and ECDSA, Ed25519, and other elliptic curve digital signature algorithms).In this column, we will review the current state of the art of cryptanalysis for these problems using classical (non-quantum) computers, including in particular our most recent computational records for integer factoring and prime field discrete logarithms.

Details

ISSN :
15584046 and 15407993
Volume :
20
Database :
OpenAIRE
Journal :
IEEE Security & Privacy
Accession number :
edsair.doi.dedup.....59fcef158b3275fd6f2eadcd0f94afb1