24 results on '"Satyanarayana, B."'
Search Results
2. Bianchi type cosmological models with heat flow in Lyra’s geometry
- Author
-
SANTHIKUMAR R, Satyanarayana B, Suryanaryana P S Kornu, and Satyannarayana P E
- Abstract
Bianchi type-V cosmological model along with perfect fluid and heat conduction have been discussed in the presence of Lyra’s geometry(1951 Lyra et al.). By using the law of variation for the mean Hubble parameter the solution contains heat conduction and gauge function for \(n=0 and n\ne 0\), which is related to the average scale factor of metric and gives decelerating parameter. We discussed heat transmission stages from initial time to the late time of the universe. The relation between density and pressure is discussed. We obtain a constant decelerating parameter. Physical interpretation and thermodynamic laws are discussed.
- Published
- 2022
3. Design, fabrication and large scale qualification of cosmic muon veto scintillator detectors
- Author
-
Saraf, Mandar, Chinnappan, Pandi Raj, Deodhar, Aditya, Jangra, Mamta, Krishnamoorthi, J., Majumder, Gobinda, Padmavathy, Veera, Ravindran, K. C., Shah, Raj Bhupen, Shinde, Ravindra, and Satyanarayana, B.
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Instrumentation ,Mathematical Physics ,High Energy Physics - Experiment - Abstract
The INO collaboration is designing a cosmic muon veto detector (CMVD) to cover the mini-ICAL detector which is operational at the IICHEP transit campus, Madurai in South India. The aim of the CMVD is to study the feasibility of building an experiment to record rare events at a shallow depth of around 100 m, and use plastic scintillators to veto atmospheric muons from those produced by the rare interactions within the target mass of the detector. The efficiency of such a veto detector should be better than 99.99% and false positive rate should be less than 10-5. The CMVD is being built using extruded plastic scintillator (EPS) strips to detect and tag atmospheric muons. More than 700 EPS strips are required to build the CMVD. Two EPS strips are pasted together to make a di-counter (DC) and wavelength shifting fibres are embedded inside the EPS strips to trap the scintillation light generated by a passing cosmic ray muon and transmit it as secondary photons to the Silicon Photo-Multipliers (SiPMs) mounted at the two ends of the DCs. Since the efficiency requirement of the veto detector is rather high, it is imperative to thoroughly test each and every component used for building the CMVD. A cosmic ray muon telescope has been setup using the DCs to qualify all the DCs that will be fabricated. In this paper we will discuss the details of the design and fabrication of the DCs, the cosmic muon setup and the electronics used for their testing and the test results.
- Published
- 2023
4. DATA SCIENCE AND DEEP LEARNING APPLICATIONS IN THE E-COMMERCE INDUSTRY: A SURVEY
- Author
-
Satyanarayana B, Jaya Bhaskar M, and I. Kali Pradeep
- Subjects
General Computer Science ,business.industry ,Computer science ,Deep learning ,Computational Mechanics ,E-commerce ,Artificial intelligence ,business ,Engineering (miscellaneous) ,Data science - Published
- 2020
5. Design of Low Power & Area Efficient of 8-Bit Comparator using GDI Technique
- Author
-
Pyasa Dileep and A Satyanarayana B Sangeeth Kumar
- Subjects
Comparator ,Computer science ,8-bit ,Electronic engineering ,Power (physics) - Abstract
In this paper we are design a circuit based on data selector and distributor networks in which we will not realize the circuit based upon the expressions but off course the circuit which have designed will have internally some expression. In the recent trends the need for low power and less on-chip area is on high note for the portable devices. In this project we want to focus on the design constraints of VLSI. Innovative design of 8-Bit GDI based Comparator will be proposed and implemented. Optimization depends on selection of GDI Cell as well as selection of primary inputs to the terminals of GDI cell. 8-Bit GDI based Comparator will be designed and simulated using Tanner EDATool. Comparator has three main outputs where it can compare the weight of two words and generates three functions. GDI has the advantage of low power consumption because the total number of logic devices needed willbe less and it can also operate with high speed due to affective realization of logic using minimal hardware. Comparator circuits is designed using tanner tools and also observe the simulation results in H-SPICE attaining low power and less delay.
- Published
- 2020
6. Embedment of Carbon Nanotubes in Carbon Fibre Reinforced Polymer for Carrier Plates in Space Payload
- Author
-
Dhaval A. Vartak Dhaval A. Vartak, Yogesh Ghotekar Yogesh Ghotekar, B. Satyanarayana B. Satyanarayana, B. S. Munjal B. S. Munjal, and Pina M. Bhatt Pina M. Bhatt
- Published
- 2020
7. Magnetic field measurements on the mini-ICAL detector using Hall probes
- Author
-
Honey, Satyanarayana, B., Shinde, R., Datar, V. M., Indumathi, D., Thulasi, Ram K V, Dalal, N., Prabhakar, S., Ajith, S., Pathak, Sourabh, and Patel, Sandip
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,High Energy Physics::Experiment ,Instrumentation and Detectors (physics.ins-det) ,Instrumentation ,Mathematical Physics ,High Energy Physics - Experiment - Abstract
The magnetised 51 kton Iron Calorimeter (ICAL) detector proposed to be built at INO is designed with a focus on detecting 1-20 GeV muons. The magnetic field will enable the measurement of the momentum of the $\mu^-$ and $\mu^+$ generated from the charge current interactions of $\nu_\mu$ and $\bar\nu_\mu$ separately within iron in the detector, thus permitting the determination of the neutrino mass ordering/hierarchy, among other important goals of ICAL. Hence it is important to determine the magnetic field as accurately as possible. The mini-ICAL detector is an 85-ton prototype of ICAL, which is operational at Madurai in South India. We describe here the first measurement of the magnetic field in mini-ICAL using Hall sensor PCBs. A set-up developed to calibrate the Hall probe sensors using an electromagnet. The readout system has been designed using an Arduino Nano board for selection of channels of Hall probes mounted on the PCB and to convert the analog voltage to a digital output. The magnetic field has been measured in the small gaps (provided for the purpose) between iron plates in the top layer of mini-ICAL as well as in the air just outside the detector. A precision of better than 3% was obtained, with a sensitivity down to about 0.03 kGauss when measuring the small fringe fields outside the detector., Comment: 13 pages, 17 figures, latex
- Published
- 2022
8. Qualification study of SiPMs on a large scale for the CMVD Experiment
- Author
-
Jangra, Mamta, Bhupen, Raj, Majumder, Gobinda, Gothe, Kiran, Saraf, Mandar, Parmar, Nandkishor, Satyanarayana, B., Shinde, R. R., Rao, Shobha K., Upadhya, Suresh S, Datar, Vivek M, Glenzinski, Douglas A., Bross, Alan, Pla-Dalmau, Anna, Zutshi, Vishnu V., Group, Robert Craig, and Dukes, E Craig
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,High Energy Physics::Experiment ,Instrumentation and Detectors (physics.ins-det) ,Instrumentation ,Mathematical Physics ,High Energy Physics - Experiment - Abstract
A Cosmic Muon Veto (CMV) detector using extruded plastic scintillators is being designed around the mini-Iron Calorimeter (mini-ICAL) detector at the transit campus of the India based Neutrino Observatory, Madurai for the feasibility study of shallow depth underground experiments. The scintillation signals that are produced in the plastic due to muon trajectories are absorbed by wavelength shifting (WLS) fibres. The WLS fibres re-emit photons of longer wavelengths and propagate those to silicon photo-multipliers (SiPMs). The SiPMs detect these photons, producing electronic signals. The CMV detector will use more than 700 scintillators to cover the mini-ICAL detector and will require around 3000 SiPMs. The design goal for the cosmic muon veto efficiency of the CMV is >99.99%. Hence, every SiPM used in the detector needs to be tested and characterised to satisfy the design goal of CMV. A mass testing system was developed for the measurement of gain and choice of the overvoltage ($V_{ov}$) of each SiPMs using an LED driver. The $V_{ov}$ is obtained by studying the noise rate, the gain of the SiPM. This paper describes the experimental setup used to test the SiPMs characteristics along with detailed studies of those characteristics as a function of temperature., 16 pages, 20 figures
- Published
- 2022
9. Erratum: The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c (The European Physical Journal C (2009) 60 (359-373) doi: 10.1140/epjc/s10052-009-0959-5)
- Author
-
Abdullin, S., Abramov, V., Acharya, B. S., Adam, Nadia E., Adams, M. R., Adzic, P., Akchurin, N., Akgun, U., Albayrak, E. A., Alemany-Fernandez, R., Almeida, N., Anagnostou, Georgios, Andelin, D., Anderson, E. W., Anfreville, M., Anicin, I., Antchev, G., Antunovic, Z., Arcidiacono, R., Arenton, M. W., Auffray, E., Argirò, Stefano, Askew, A., Atramentov, O., Ayan, S., Arcidy, M., Aydin, S., Aziz, T., Baarmand, M., Babich, K., Baccaro, S., Baden, D., Baffioni, S., Bakirci, M. N., Mezősi, Balázs, Banerjee, S., Bard, R., Barge, D., Barnes, V., Barney, D., Barone, L., Bartoloni, A., Baty, C., Bawa, H., Baiatian, G., Bandurin, D., Beauceron, S., Bell, K. W., Bencze, György L., Benetta, R., Bercher, M., Beri, S., Bernet, C., Berntzon, L., Berthon, U., Besancon, M., Betev, B., Beuselinck, R., Bhatnagar, V., Bhatti, A., Biino, C., Blaha, Jan, Bloch, P., Blyth, S., Bodek, A., Bornheim, A., Bose, S., Bose, T., Bourotte, J., Brett, A. M., Brown, R. M., Britton, D., Budd, H., Buehler, M., Burchesky, K., Busson, P., Camanzi, B., Camporesi, T., Cankoçak, K., Carrell, K. W., Carrera, E., Cartiglia, N., Cavallari, F., Cerci, S., Cerutti, M., Chang, P., Chang, Y. H., Charlot, C., Chen, E. A., Chen, W. T., Chen, Z., Chendvankar, S., Chipaux, R., Choudhary, B. C., Choudhury, R. K., Chung, Y., Clarida, W., Cockerill, D. J. A., Combaret, C., Conetti, S., Cossutti, F., Cox, B., Cremaldi, L., Cushman, P., Cussans, D. G., Dafinei, I., Damgov, J., Da Silva Di Calafiori, D. R., Daskalakis, Georgios, Davatz, G., David, A., De Barbaro, P., Debbins, P., Deiters, K., Dejardin, M., Djordjevic, M., Deliomeroglu, M., Della Negra, R., Della Ricca, G., Del Re, D., Demianov, A., De Min, A., Denegri, D., Depasse, P., De Visser, T., Descamps, J., Deshpande, P. V., Diáz, J., Diemoz, M., Di Marco, E., Dimitrov, L., Dissertori, G., Dittmar, M., Djambazov, L., Dobrzynski, L., Drndarevic, S., Duboscq, J. E., Dugad, S., Dumanoglu, I., Duru, F., Dutta, D., Dzelalija, M., Efthymiopoulos, Ilias, Elias, John E., Elliott-Peisert, A., El Mamouni, H., Elvira, Daniel, Emeliantchik, I., Eno, S., Ershov, A., Erturk, S., Esen, S., Eskut, E., Evangelou, Ioannis, Evans, D. L., Fabbro, B., Faure, J. L., Fay, J., Fenyvesi, András, Ferri, Federico, Fisher, W., Flower, P. S., Franci, D., Franzoni, G., Freeman, J., Freudenreich, K., Funk, W., Ganjour, S., Gargiulo, C., Gascon, S., Gataullin, M., Gaultney, V., Gamsizkan, H., Gavrilov, V., Geerebaert, Y., Genchev, V., Gentit, F. X., Gerbaudo, D., Gershtein, Y., Ghezzi, A., Ghodgaonkar, M. D., Gilly, J., Givernaud, A., Gleyzer, S., Gninenko, S., Go, A., Gobbo, B., Godinovic, N., Golubev, N., Golutvin, I., Goncharov, P., Gong, D., Govoni, P., Grant, N., Gras, P., Grassi, T., Green, D., Greenhalgh, R. J. S., Gribushin, A., Grinev, B., Guevara Riveros, L., Guillaud, J. P., Gurtu, A., Murat Güler, A., Gülmez, E., Gümüş, K., Haelen, T., Hagopian, Sharon L., Hagopian, Vasken, Haguenauer, M., Halyo, V., Hamel De Monchenault, G., Hansen, M., Hashemi, M., Hauptman, J., Hazen, E., Heath, H. F., Heering, A., Heister, A., Heltsley, B., Hill, J. A., Hintz, W., Hirosky, R., Hobson, P. R., Honma, A., Hou, G. W. S., Hsiung, Y., Hunt, A., Husejko, M., Ille, B., Ilyina, N., Imlay, Richard L., Ingram, D., Ingram, Q., Isiksal, E., Jarry, P., Jarvis, C., Jeong, C., Jessop, C., Johnson, K., Jones, J., Jovanovic, D., Kaadze, K., Kachanov, V., Kaftanov, V., Kailas, Swaminathan Vasu, Kalagin, V., Kalinin, A., Kalmani, S., Karmgard, D., Kataria, S. K., Kaur, M., Kaya, M., Kaya, O., Kayis-Topaksu, A., Kellogg, R., Kennedy, B. W., Khmelnikov, A., Kim, H., Kisselevich, I., Kloukinas, Kostas C., Kodolova, O., Kohli, J., Kokkas, Panagiotis, Kolberg, T., Kolossov, V., Korablev, A., Korneev, Y., Kosarev, I., Kramer, L., Krasnikov, N., Krinitsyn, A., Krokhotin, A., Krpic, D., Kryshkin, V., Kubota, Y., Kubik, A., Kuleshov, S., Kumar, A., Kumar, P., Kunori, S., Kuo, C. M., Kurt, P., Kyberd, P., Kyriakis, Aristotelis, Laasanen, A., Ladygin, V., Laird, E., Landsberg, G., László, András, Lawlor, C., Lazic, D., Lebeau, M., Lecomte, P., Lecoq, P., Ledovskoy, A., Lee, S. -W, Leshev, G., Lethuillier, M., Levchuk, L., Lin, S. W., Lin, W., Linn, S., Lintern, A. L., Litvine, V., Litvintsev, D., Litov, L., Lobolo, L., Locci, E., Lodge, A. B., Longo, E., Loukas, Dimitris, Los, S., Lubinsky, V., Luckey, P. D., Lukanin, V., Lustermann, W., Lynch, C., Ma, Y., MacHado, E., Mahlke-Krueger, H., Maity, M., Majumder, G., Malberti, M., Malclès, J., Maletic, D., Mandjavidze, I., Mans, J., Manthos, Nikolaos, Maravin, Y., Marchica, C., Marinelli, N., Markou, Athanasios, Markou, Christos, Marlow, D., Markowitz, P., Marone, M., Martinez, G., Mathez, H., Matveev, V., Mavrommatis, C., Maurelli, G., Mazumdar, K., Meridiani, P., Merlo, J. P., Mermerkaya, H., Mescheryakov, G., Mestvirishvili, A., Mikhailin, V., Milenovic, P., Miller, M., Milleret, G., Miné, P., Moeller, A., Mohammadi-Najafabadi, M., Mohanty, A. K., Moissenz, P., Mondal, N., Moortgat, F., Mossolov, V., Mur, M., Musella, P., Musienko, Y., Nagaraj, P., Nardulli, A., Nash, J., Nedelec, P., Negri, P., Newman, H. B., Nikitenko, A., Norbeck, E., Nessi-Tedaldi, F., Obertino, M. M., Olson, J., Onel, Y., Onengut, G., Organtini, G., Orimoto, T., Ozkan, C., Ozkurt, H., Ozkorucuklu, S., Ozok, F., Paganoni, M., Paganini, P., Paktinat, S., Pal, Asit Kumar, Palma, Alberto, Panev, B., Pant, L., Papadakis, Antonis, Papadakis, I., Papadopoulos, Ioannis M., Paramatti, R., Parracho, P., Pastrone, N., Patil, M., Patterson, J. R., Pauss, F., Penzo, A., Petrakou, Eleni, Petrushanko, S., Petrosyan, Ashot G., Phillips II, D. G., Pikalov, V., Piperov, S., Piroué, P., Podrasky, V., Polatoz, A., Pompos, A., Popescu, S., Posch, C., Pozdnyakov, A., Ptohos, Fotios, Puljak, I., Pullia, A., Punz, T., Puzovic, J., Qian, W., Ragazzi, S., Rahatlou, S., Ralich, R. M., Rande, J., Razis, P. A., Redaelli, N., Reddy, L., Reidy, J., Renker, D., Reucroft, S., Reymond, J. M., Ribeiro, P., Roeser, U., Rogalev, E., Rogan, C., Roh, Y., Rohlf, J., Romanteau, T., Rondeaux, F., Ronquest, M., Ronzhin, A., Rosowsky, A., Rovelli, C., Ruchti, R., Rumerio, P., Rusack, R., Rusakov, S. V., Ryan, M. J., Ryazanov, A., Safronov, G., Sala, Leonardo, Salerno, R., Sanders, D. A., Santanastasio, F., Sanzeni, C., Sarycheva, L., Satyanarayana, B., Schinzel, D., Schmidt, I., Seez, C., Sekmen, S., Semenov, S., Senchishin, V., Sergeyev, S., Serin, M., Sever, R., Sharp, P., Shepherd-Themistocleous, Claire H., Siamitros, Christos, Sillou, Daniel, Singh, J. B., Singovsky, A., Sirois, Y., Sirunyan, A. M., Silva, J., Silva, P., Skuja, A., Sharma, S., Sherwood, B., Shiu, J. G., Shivpuri, R. K., Shukla, P., Shumeiko, Nikolai M., Smirnov, V., Smith, B. J., Smith, V. J., Sogut, K., Sonmez, N., Sorokin, P., Spezziga, M., Sproston, M., Stefanovich, R., Stöckli, F., Stolin, V., Sudhakar, K., Sulak, L., Suter, H., Suzuki, I., Swain, J., De Fatis, T. T., Talov, V., Takahashi, M., Tcheremoukhine, A., Teller, O., Teplov, K., Theofilatos, Konstantinos, Thiebaux, C., Thomas, R., Timciuc, V., Timlin, C., Titov, M., Tobias, Al, Tonwar, S., Topakli, H., Topkar, A., Triantis, Frixos A., Troshin, S., Tully, C., Turchanovich, L., Tyurin, N., Ueno, K., Ulyanov, A., Uzunian, A., Vanini, A., Vankov, I., Vardanyan, I., Varela, F., Varela, Joäo, Vasil'Ev, A., Velasco, M., Vergili, M., Verma, P., Verrecchia, P., Vesztergombi, György, Veverka, Jan, Vichoudis, Paschalis, Vidal, R., Virdee, T., Vishnevskiy, A., Vlassov, E., Vodopiyanov, I., Volobouev, I., Volkov, A., Volodko, A., Von Gunten, H. P., Wang, L., Wang, M., Wardrope, D., Weber, M., Weng, J., Werner, J., Wetstein, M., Winn, D., Wigmans, R., Williams, J. H., Whitmore, J., Won, S., Wu, S. X., Yang, Y., Yaselli, I., Yazgan, Efe, Yetkin, T., Yohay, R., Zabi, A., Zalan, P., Zamiatin, N., Zarubin, A., Zelepoukine, S., Zeyrek, M., Zhang, J., Zhang, L. Y., Zhu, K., Zhu, R. Y., and Ptohos, Fotios [0000-0002-3432-3452]
- Abstract
61 2 353 356 Cited By :1
- Published
- 2009
10. India-based Neutrino Observatory: Interim project report. Vol. 1
- Author
-
Arumugam, V., Behere, A., Bhatia, M. S., Chandratre, V. B., Datar, V. M., Diwakar, M. P., Ghodgaonkar, M. G., Mohanty, A. K., Mukhopadhyay, P. K., Ojha, S. C., Pant, L. M., Srinivas, K., Raychaudhuri, A., Choudhary, B., Choudhury, D., Dutta, Sukanta, Goyal, A., Ranjan, K., Datta, A., Gandhi, R., Ghoshal, P., Goswami, S., Mehta, P., Subhendu Rakshit, Pakvasa, S., Sharma, S. D., Nandi, B., Sankar, S. Uma, Varma, R., Indumathi, D., Mani, H. S., Murthy, M. V. N., Rajasekaran, G., Salam, A., Mahapatra, D. P., Phatak, S. C., Bhadra, A., Ghosh, B., Mukherjee, A., Sarkar, S. K., Bhatnagar, V., Gupta, M. M., Singh, J. B., Joshipura, A. S., Mohanty, S., Rindani, S. D., Bhattacharya, P., Bhattacharya, S., Bose, S., Chattopadhyay, S., Ghosal, A., Goswami, A., Kar, K., Majumdar, D., Pal, P. B., Saha, S., Samanta, A., Sanyal, A., Sarkar, S., Sen, S., Sharan, M., Mishra, G. C., Acharya, Bannanje Sripath, Banerjee, S., Bhide, S., Dighe, A., Dugad, S. R., Ghosh, P., Gothe, K. S., Gupta, S. K., Kalmani, S. D., Krishnan, N., Mondal, N. K., Nagaraj, P., Nagesh, B. K., Paul, B., Rao, S. K., Ray, A. K., Reddy, L. V., Satyanarayana, B., Upadhya, S., Verma, P., Bhandari, R. K., Mohanty, B., Murthy, G. S. N., Nayak, T., Pal, S. K., Sarma, P. R., Singaraju, R. N., and Viyogi, Y. P.
11. Optimized high speed turning on Inconel 718 using Taguchi method based Grey relational analysis
- Author
-
Satyanarayana, B., G Ranga Janardhana, and Hanumantha Rao, D.
12. India-based Neutrino Observatory: Project Report. Volume I
- Author
-
Athar, M. Sajjad, Hasan, Rashid, Singh, S. K., Singh, B. K., Singh, C. P., Singh, V., Arumugam, V., Behere, Anita, Bhatia, M. S., Chandratre, V. B., Choudhury, R. K., Datar, V. M., Diwakar, M. P., Ghodgaonkar, M. G., Mohanty, A. K., Matkar, A. W., Mukhopadhyay, P. K., Ojha, S. C., Pant, L. M., Srinivas, K., Raychaudhuri, Amitava, Choudhary, Brajesh, Choudhury, Debajyoti, Dutta, Sukanta, Goyal, Ashok, Ranjan, Kirti, Agarwalla, Sanjib K., Choubey, Sandhya, Datta, Anindya, Gandhi, Raj, Ghoshal, Pomita, Goswami, Srubabati, Mehta, Poonam, Panda, Sukanta, Rakshit, S., Pakvasa, Sandip, Sharma, S. D., Nandi, Basanta, Sankar, S. Uma, Varma, Raghav, Jayapandian, J., Sundar, C. S., Indumathi, D., Mani, H. S., Murthy, M. V. N., Rajasekaran, G., Sinha, Nita, Ramakrishna, D. V., Agrawal, Pankaj, Mahapatra, D. P., Phatak, S. C., Bhadra, A., Ghosh, B., Mukherjee, A., Sarkar, S. K., Bhatnagar, Vipin, Gupta, M. M., J B Singh, Joshipura, A. S., Mohanty, Subhendra, Rindani, S. D., Bhattacharya, Sudeb, Bose, Suvendu, Chattopadhyay, Sukalyan, Ghosal, Ambar, Goswami, Asimananda, Kar, Kamales, Majumdar, Debasish, Pal, Palash B., Saha, Satyajit, Samanta, Abhijit, Sanyal, Abhijit, Sarkar, Sandip, Sen, Swapan, Sharan, Manoj, Mishra, G. C., Acharya, Bannanje Sripath, Banerjee, Sudeshna, Bhide, Sarika, Dighe, Amol, Dugad, S. R., Ghosh, P., Gothe, K. S., Gupta, S. K., Kalmani, S. D., Krishnan, N., Mondal, Naba K., Nagaraj, P., Nagesh, B. K., Paul, Biswajit, Rao, Shobha K., Ray, A. K., Reddy, L. V., Satyanarayana, B., Upadhya, S., Verma, Piyush, Bhandari, R. K., Chattopadhyay, Subhasish, Ghosh, Premomay, Mohanty, B., Murthy, G. S. N., Nayak, Tapan, Pal, S. K., Sarma, P. R., Singaraju, R. N., and Viyogi, Y. P.
13. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: a case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), P. R. China (vol 10, pg 5681, 2013)
- Author
-
Leempoel, K., Satyanarayana, B., Bourgeois, C., Zhang, J., Chen, M., Wang, J., Bogaert, J., and Dahdouh-Guebas, F.
14. Integral transform involving the product of a general class of polynomals, Struve's function, H-function of one and r variables
- Author
-
Satyanarayana, B. and Pragathi Kumar Yazali
15. Free vibration analysis of carbon nanotube reinforced laminated composite panels
- Author
-
RAMGOPAL REDDY BIJJAM, Ramji, K., and Satyanarayana, B.
- Subjects
CNT Reinforced Composite Panels ,Finite Element Method ,Effective ElasticProperties ,Natural Frequency - Abstract
In this paper, free vibration analysis of carbon nanotube (CNT) reinforced laminated composite panels is presented. Three types of panels such as flat, concave and convex are considered for study. Numerical simulation is carried out using commercially available finite element analysis software ANSYS. Numerical homogenization is employed to calculate the effective elastic properties of randomly distributed carbon nanotube reinforced composites. To verify the accuracy of the finite element method, comparisons are made with existing results available in the literature for conventional laminated composite panels and good agreements are obtained. The results of the CNT reinforced composite materials are compared with conventional composite materials under different boundary conditions., {"references":["Iijima, S. Helical microtubules of graphitic carbon, Nature, vol. 354,\npp.56-58, 1991.","Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W., Gates,\nT.S. The stress-strain behavior of polymer-nanotube composites from\nmolecular dynamics simulation, Composites Science and Technology,\nvol. 63, pp. 1655-1661, 2003.","Zhu, R., Pan, E., Roy, A.K. Molecular dynamics study of the stressstrain\nbehavior of carbon-nanotube reinforced Epon 862 composites,\nMaterials Science & Engineering, vol. 447, pp. 51-57, 2007.","Liu, Y.J., Chen, X.L. Evaluations of the effective material properties of\ncarbon nanotube-based composites using a nanoscale representative\nvolume element, Mechanics of Materials, Vol. 35, pp. 69-81, 2003.","Odegard, G.M., Frankland, S.J.V., Gates, T.S. Effect of nanotube\nfunctionalization on the elastic properties of polyethylene nanotube\ncomposites, AIAA, vol.43 (8), 2005.","Song, Y.S., Youn, J.R. Modeling of effective elastic properties for\npolymer based carbon nanotube composites, Polymer, vol.47, pp.1741-\n1748, 2006.","Batra, R.C., and Sears, A. Continuum models of multi-walled carbon\nnanotubes, Solids and Structures, vol.44, pp.7577-7596, 2007.","Harald Berger et. al, Evaluation of effective material properties of\nrandomly distributed short cylindrical fiber composites using a\nnumerical homogenization technique, Mechanics of materials and\nstructures, vol.2, No.8, pp.1561-1570, 2007.","Fu, Y.M., Hong, J.W., Wang, X.Q. Analysis of nonlinear vibration for\nembedded carbon nanotubes. J. Sound Vib. 296, 746-756, 2006.\n[10] Gibson, R.F., Ayorinde, E.O., Wen, Y.F. Vibrations of carbon nanotubes\nand their composites: a review. Compos. Sci. Technol. 67, 1-28, 2007.\n[11] Ru, C.Q. Effective bending stiffness of carbon nanotubes. Phys. Rev. B\n62, 9973-9976, 2000.\n[12] Ru, C.Q. Elastic buckling of single-walled carbon nanotubes ropes under\nhigh pressure. Phys. Rev. B,62, 10405-10408, 2000.\n[13] Tserpes, K.I., Papanikos, P., Finite element modeling of single-walled\ncarbon nanotubes. Compos. Part B: Eng. 36, 468-477, 2005.\n[14] Thostenson, E.T., Ren, Z., Chou, T.W. Advances in the science and\ntechnology of carbon nanotubes and their composites: a review.\nCompos. Sci. Tech. 61, 1899-1912, 2001.\n[15] Fan, C.W., Lin, C.S., Hwu, C. Numerical estimation of the mechanical\nproperties of CNT-reinforcing composites, Proceedings of fifth Taiwan-\nJapan work shop on Mechanical and Aerospace Engineering, Oct.21-24,\n2009, Nantou, Taiwan.\n[16] Agarwal B.D., Broutman, L.J. \"Analysis and performance of fiber\ncomposites\", John wiley & sons, inc., Second Edition.\n[17] Rikards, R., Chate, A., Ozolinsh, O. Analysis for buckling and\nvibrations of composite stiffened shells and plates, Composite\nStructures, 51, pp: 361 to 370, 2001.\n[18] ANSYS, \"ANSYS Multiphysics user-s manual\", Version release 11.0."]}
16. On modified jacobi matrix polynomials
- Author
-
Sri Lakshmi, V., Srimannarayana, N., Satyanarayana, B., Radha Madhavi, and Ramesh, D.
17. Mangrove species distribution and abundance in relation to local environmental settings : a case study at Tumpat, Kelantan Delta, east coast of peninsular Malaysia
- Author
-
Satyanarayana, B., Idris, I. F., Mohamad, K. A., Mohd-Lokman, H., Shazili, N. A. M., Farid DAHDOUH-GUEBAS, and General Botany and Nature Management
- Subjects
mangrove species - Abstract
O
18. Results on quotient BF-algebras via interval valued fuzzy dual ideals
- Author
-
RAMESH DASARI, Kumar, M. S., Srimannarayana, N., Devanandam, D., and Satyanarayana, B.
19. Spatial heterogeneity in mangroves assessed by GeoEye-1 satellite data: a case-study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), China
- Author
-
Kevin Leempoel, Bourgeois, C., Satyanarayana, B., Jan Bogaert, Farid DAHDOUH-GUEBAS, and General Botany and Nature Management
- Subjects
mangrove ,ecology - Abstract
Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc.) to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China) were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively). Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (−36%) was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%), the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements) (August–September, 2009) as well as spectral reflectance values (obtained from pansharpened GeoEye-1), both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%). In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m) for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e.g. Kandelia obovata) at Gaoqiao. Despite limitations such as geometric distortion and single panchromatic band, the 42 yr old Corona declassified images are invaluable for land-use/cover change detections when compared to recent satellite data sets.
20. Does human infringement at the spawning grounds challenge horseshoe crab eggs and their embryogenesis?
- Author
-
Bryan Raveen Nelson, Satyanarayana, B., Zhong, M. J. H., and Shaharom, F.
21. Thermal diffusion and viscous dissipation effects on magnetohydrodynamic heat and mass filled with TiO2 and Al2O3 water based nanofluids
- Author
-
Kotha Gangadhar, Narasimharao, N. S. L. V., and Satyanarayana, B.
22. Modeling and simulation of row based flexible manufacturing systems
- Author
-
srinivas chandanam, Satyanarayana, B., Ramji, K., and Ravela, N.
23. Foraminiferal distribution and association patterns in the mangrove sediments of Kapar and Matang, West Peninsular Malaysia
- Author
-
Satyanarayana, B., Mohd-Lokman, H., Ibrahim Razarudin, Ibrahim Sulong, Farid DAHDOUH-GUEBAS, and Biology
24. Integral representations for modified konhauser’s polynomial
- Author
-
Nerella Srimannarayana, Satyanarayana, B., Ramesh, D., and Radha Madhavi, M.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.