1. Biased landscapes for random constraint satisfaction problems
- Author
-
Guilhem Semerjian, Louise Budzynski, Federico Ricci-Tersenghi, Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Systèmes Désordonnés et Applications, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Dipartimento di Fisica and INFM, and Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome]
- Subjects
FOS: Computer and information sciences ,Statistics and Probability ,Phase transition ,Discrete Mathematics (cs.DM) ,FOS: Physical sciences ,0102 computer and information sciences ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,[PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn] ,Limit (mathematics) ,Statistical physics ,010306 general physics ,Cluster analysis ,random constraint satisfaction problems ,phase transitions ,algorithmic complexity ,ComputingMilieux_MISCELLANEOUS ,Constraint satisfaction problem ,Mathematics ,Complexity of constraint satisfaction ,Probability (math.PR) ,Statistical and Nonlinear Physics ,Disordered Systems and Neural Networks (cond-mat.dis-nn) ,Condensed Matter - Disordered Systems and Neural Networks ,Tree (graph theory) ,Satisfiability ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010201 computation theory & mathematics ,Simulated annealing ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,Computer Science - Discrete Mathematics - Abstract
The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold., Comment: 32 pages, 16 figures
- Published
- 2019
- Full Text
- View/download PDF