Back to Search Start Over

Biased landscapes for random constraint satisfaction problems

Authors :
Guilhem Semerjian
Louise Budzynski
Federico Ricci-Tersenghi
Laboratoire de Physique Théorique de l'ENS (LPTENS)
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Systèmes Désordonnés et Applications
Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023))
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)
Dipartimento di Fisica and INFM
Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome]
Source :
Journal of Statistical Mechanics: Theory and Experiment, Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2019, 2019 (2), pp.023302. ⟨10.1088/1742-5468/ab02de⟩
Publication Year :
2019
Publisher :
IOP Publishing, 2019.

Abstract

The typical complexity of Constraint Satisfaction Problems (CSPs) can be investigated by means of random ensembles of instances. The latter exhibit many threshold phenomena besides their satisfiability phase transition, in particular a clustering or dynamic phase transition (related to the tree reconstruction problem) at which their typical solutions shatter into disconnected components. In this paper we study the evolution of this phenomenon under a bias that breaks the uniformity among solutions of one CSP instance, concentrating on the bicoloring of k-uniform random hypergraphs. We show that for small k the clustering transition can be delayed in this way to higher density of constraints, and that this strategy has a positive impact on the performances of Simulated Annealing algorithms. We characterize the modest gain that can be expected in the large k limit from the simple implementation of the biasing idea studied here. This paper contains also a contribution of a more methodological nature, made of a review and extension of the methods to determine numerically the discontinuous dynamic transition threshold.<br />Comment: 32 pages, 16 figures

Details

ISSN :
17425468
Volume :
2019
Database :
OpenAIRE
Journal :
Journal of Statistical Mechanics: Theory and Experiment
Accession number :
edsair.doi.dedup.....11cb66247d31dcf5c23bd79954290a3f
Full Text :
https://doi.org/10.1088/1742-5468/ab02de