25 results on '"De Carlo, F"'
Search Results
2. A Hybrid Multi-Criteria Decision Model (HMCDM) based on AHP and TOPSIS analysis to evaluate Maintenance Strategy
- Author
-
Di Bona, G., Falcone, D., Forcina, A., Silvestri, L., De Carlo, F., and Abaei, M. M.
- Subjects
Water Bottling Industry ,Sensitivity Analysis ,Operations research ,AHP ,Maintenance Strategy Selection ,RAMS ,TOPSIS ,Computer science ,Maintenance strategy ,Analytic hierarchy process ,Multi criteria decision - Published
- 2021
- Full Text
- View/download PDF
3. A novel approach for spare parts dynamic deployment
- Author
-
Cantini, A., De Carlo, F., Leoni, L., and Tucci, M.
- Subjects
ABC multi-criteria ,Dynamic asset deployment ,Spare parts management ,Two-echelon network - Published
- 2021
4. On reliability estimation approaches for a Weibull failure modelling
- Author
-
Leoni, L., Cantini, A., De Carlo, F., and Tucci, M.
- Subjects
Hierarchical Bayesian Modelling ,Reliability analysis ,Weibull distribution - Published
- 2021
5. Slate detection and rul prediction of industrial plant components in the absence of fault data. Comparison between multivariate control charts and one-class svm: A case study
- Author
-
Navicelli, A., De Carlo, F., and Tucci, M.
- Subjects
Predictive maintenance, prognostic, multivariate control charts, Support Vector Machine - Published
- 2020
6. Predictive maintenance in industrial plants: real application of Machine Learning models for prognostics
- Author
-
Navicelli, A., Vincitorio, Matteo, De Carlo, F., and Tucci, M.
- Subjects
Predictive maintenance, Machine Learning, prognostics - Published
- 2019
7. Proposal of a new approach for the asset replacement period in the natural gas distribution industry
- Author
-
De Carlo, F. and Arleo, M. A.
- Subjects
Life Cycle Cost Analysis ,Maintenance Management ,Natural gas networks - Published
- 2017
8. Are all people with diabetes and cardiovascular risk factors or microvascular complications at very high risk? Findings from the Risk and Prevention Study
- Author
-
Marzona, I., Avanzini, F., Lucisano, G., Tettamanti, M., Baviera, M., Nicolucci, A., Roncaglioni, M. C., Tombesi, M., Tognoni, G., Massa, E., Marrocco, W., Micalella, M., Caimi, V., Longoni, P., Franzosi, M. G., Monesi, L., Pangrazzi, I., Barlera, S., Milani, V., Nicolis, E., Casola, C., Clerici, F., Palumbo, A., Sgaroni, G., Marchioli, R., Silletta, M. G., Pioggiarella, R., Scarano, M., Marfisi, R. M., Flamminio, A., Macino, L., Ferri, B., Pera, C., Polidoro, A., Abbatino, D., Acquati, M., Addorisio, G., Adinolfi, D., Adreani, L., Agistri, M. R., Agneta, A., Agnolio, M. L., Agostini, N., Agostino, G., Airo, A., Alaimo, N., Albano, M., Albano, N., Alecci, G., Alemanno, S., Alexanian, A., Alfarano, M., Alfe, L., Alonzo, N., Alvino, S., Ancora, A., Andiloro, S., Andreatta, E., Angeli, S., Angiari, F., Angilletti, V., Annicchiarico, C., Anzivino, M., Aprea, R., Aprile, A., Aprile, E., Aprile, I., Aprile, L., Armellani, V., Arnetoli, M., Aronica, A., Autiero, V., Bacca, G., Baccalaro, A. M., Bacci, M., Baglio, G., Bagnani, M., Baiano, A., Baldari, A., Ballarini, L., Banchi, G., Bandera, R., Bandini, F., Baratella, M., Barbieri, A., Barbieri Vita, A., Bardi, M., Barlocchi, M., Baron, P., Bartoli, M., Basile, A., Basile, F., Basile, S., Battaggia, A., Battaglia, A., Bau, A., Beconcini, G., Beggio, R., Belfiore, P. A., Belicchi, M., Bellamoli, S., Bellini, C., Bellomo, M., Benetollo, C., Benetti, R., Beretta, E., Bertalero, P., Bertaso, F. G., Bertolani, U., Bettelli, G., Biagiotti, G., Bianchi, S., Bianco, G., Biccari, F., Bigioli, F., Bindi, M., Bisanti, G., Bitetti, E. M., Blasetti, M. P., Blesi, F., Boato, V., Boga, S., Boidi, E., Boldrin, G., Bollati, A., Bolzan, L., Bolzonella, S., Bonardi, P., Bonato, G. B., Bonci, M., Bonfitto, G., Bonincontro, E., Boninsegna, F., Bonissone, D., Bono, L., Bonollo, E., Borghi, M., Borioli, N., Borsatto, M., Bosco, T., Bosisio Pioltelli, M., Botarelli, C., Botassis, S., Bottini, F., Bottos, C., Bova, G., Bova, V., Bozzani, A., Bozzetto, R. M., Braga, V. T., Braglia, M., Bramati, E., Brazzoli, C., Breglia, G., Brescia, A., Briganti, D., Brigato, G., Brocchi, A., Brosio, F. A., Bruni, E., Buscaglia, E., Bussini, M. D., Bussotti, A., Buzzaccarini, F., Buzzatti, A., Caccamo, G., Cacciavillani, C., Caggiano, G., Calciano, F. P., Calderisi, M., Calienno, S., Caltagirone, P., Calzolari, I., Cammisa, M., Campanaro, M., Campanella, G. B., Campese, F., Canali, G., Candiani, D. E. L., Canepa, R., Canini, D., Canino, A., Cantoro, E. A., Capilupi, V., Capotosto, P., Cappelli, B., Capraro, G., Carafa, F. A., Carano, Q., Carcaterra, V., Carriero, D., Carrozzo, G., Cartanese, M., Casalena, M., Casarola, M., Caso, C., Casotto, M., Castaldi, F., Castegnaro, R., Castellani, G., Castri, S., Catalano, E., Catinello, N., Caturano, G., Cavallaro, R., Cavallo, A. M., Cavallo, G., Cavion, M. T., Cavirani, G., Cazzaniga, F., Cazzetta, D., Cecconi, V., Cefalo, A., Celebrano, M., Celora, A., Centonze, P., Cerati, D., Cesaretti, D., Checchia, G., Checchin, A., Cherubini, M., Chianese, L., Chiappa, A., Chiappa, M. V., Chiariello, G., Chiavini, G., Chicco, M., Chiumeo, F., Ciacciarelli, A., Ciaci, D., Ciancaglini, R., Cicale, C., Cicale, S., Cipolla, A., Ciruolo, A., Citeri, A. L., Citterio, G., Clerici, M., Coazzoli, E., Collecchia, G., Colletta, F., Colombo, I., Colorio, P., Coluccia, S., Comerio, M., Comoretto, P., Compagni, M., Conte, O., Contri, S., Contrisciani, A., Coppetti, T., Corasaniti, F., Corradi, M. T., Corsano, A., Corsini, A., Corti, N., Costantini, G., Costantino, A., Cotroneo, S., Cozzi, D., Cravello, M. G., Cristiano, E., Cucchi, R., Cusmai, L., D'Errico, G. B., D'Agostino, P., Dal Bianco, L., Dal Mutto, U., Dal Pozzo, G., Dallapiccola, P., Dallatorre, G., Dalle Molle, G., Dalloni, E., D'Aloiso, A., D'Amicis, G., Danese, R., Danieli, D., Danisi, G., D'Anna, M. A., Danti, G., D'Ascanio, S., Davidde, G., De Angeli, D., De Bastiani, R., De Battisti, A., De Bellis, A., De Berardinis, G., De Carlo, F., De Giorgi, D., De Gobbi, R., De Lorenzis, E., De Luca, P., De Martini, G., De Marzi, M., De Matteis, D., De Padova, S., De Polo, P., De Sabato, N., De Stefano, T., De Vita, M. T., De Vito, U., De Zolt, V., Debernardi, F., Del Carlo, A., Del Re, G., Del Zotti, F., D'Elia, R., Della Giovanna, P., Dell'Acqua, L., Dell'Orco, R. L., Demaria, G., Di Benedetto, M. G., Di Chiara, G., Di Corcia, V., Di Domizio, O., Di Donato, P., Di Donato, S., Di Fermo, G., Di Franco, M., Di Giovannantonio, G., Di Lascio, G., Di Lecce, G., Di Lorenzo, N., Di Maro, T., Di Mattia, Q., Di Michele, E., Di Modica, R. S., Di Murro, D., Di Noi, M. C., Di Paoli, V., Di Santi, M., Di Sanzo, A., Di Turi, C., Diazzi, A., Dileo, I., D'Ingianna, A. P., Dolci, A., Dona, G., Donato, C., Donato, P., Donini, A., Donna, M. E., Donvito, T. V., Esposito, L., Esposito, N., Evangelista, M., Faita, G., Falco, M., Falcone, D. A., Falorni, F., Fanciullacci, A., Fanton, L., Fasolo, L., Fassina, R., Fassone, A., Fatarella, P., Fedele, F., Fera, I., Fera, L., Ferioli, S., Ferlini, M. G., Ferlino, R., Ferrante, G., Ferrara, F. N., Ferrarese, M. F., Ferrari, G., Ferrari, O., Ferreri, A., Ferroni, M., Fezzi, G., Figaroli, C., Fina, M. G., Fioretta, A., Fiorucci, C., Firrincieli, R., Fischetti, M., Fischietti, G., Fiume, D. C., Flecchia, G., Forastiere, G., Fossati, B., Franceschi, P. L., Franchi, L., Franzoso, F., Frapporti, G., Frasca, G., Frisotti, A., Fumagalli, G., Fusco, D., Gabriele, P., Gabrieli, A., Gagliano, D., Galimberti, G., Galli, A., Gallicchio, N., Gallio, F., Gallipoli, T., Gallo, P., Galopin, T., Gambarelli, L., Garbin, A., Garozzo, G. M., Gasparri, R., Gastaldo, M., Gatti, E., Gazzaniga, P., Gennachi, N., Gentile, R. V., Germani, P., Gesualdi, F., Gherardi, E., Ghezzi, C., Ghidini, M. G., Ghionda, F., Giacci, L., Gialdini, D., Giampaolo, C., Giancane, R., Giannanti, A., Giannese, S., Giannini, L., Giaretta, M., Giaretta, R., Giavardi, L., Giordano, P., Giordano, E., Giordano, B., Gioria, G. M., Giugliano, R., Grassi, E. A., Greco, A., Greco, L., Grilletti, N., Grimaldi, N., Grisetti, G., Groppelli, G., Gualtieri, L., Guarducci, M., Guastella, G., Guerra, M., Guerrini, F., Guglielmini, A., Guido, A., Gulotta, P., Iacono, E., Iadarola, G., Ianiro, G., Iarussi, V., Ieluzzi, M. L., Ierardi, C., Ingaldi, F., Interlandi, S., Iocca, M., Iorno, A., Ioverno, E., Iurato, R., La Pace, L., La Piscopia, C., La Selva, R., Lafratta, M., Lamparelli, M., Lanaro, G., Lancerotto, R., Larcher, M., Lassandro, M., Lattuada, G., Laurino, P., Lefons, C., Legrottaglie, F., Lemma, A., Leone, D., Leone, F., Leso, A., Leuzzi, G., Levato, G., Libardi, L., Libralesso, N., Licini, P. I., Licursi, G., Lidonnici, F., Lillo, C., Liveri, L., Livio, A., Loiero, R. A., Loison, M., Lombardo, G., Lombardo, T., Lomunno, V., Lomuscio, S., Lonedo, A., Longo, E., Lora, L., Lotterio, A., Lucatello, L., Luongo, A., Lupoli, M., Macchia, C., Macri, G., Mafessanti, M., Maggialetti, V., Maggioni, A., Magnani, M., Maiellaro, G., Mancuso, A., Maniglio, A. R., Mannari, G. L., Manni, A., Manocchio, B., Mao, M., Marano, A., Maraone, E., Marascio, D., Marcheselli, P., Marchetto, B., Marchetto, S., Marchi, A., Marchi, G. L., Mariano, C., Marinacci, S., Marinelli, S., Marini, G., Marra, V. C., Marrali, F., Marseglia, C., Martello, G., Martino, C., Martino, G., Martino, M., Marulli, C. F., Maruzzi, G., Marzotti, A., Mascheroni, G., Mascolo, P., Masoch, G., Masone, R., Massa, L., Massafra, M., Massi, M., Massignani, D. M., Matarese, A. M., Matini, G., Mauro, R., Mazzi, M., Mazzillo, A., Mazzocato, E., Mazzoleni, N. S., Mazzone, A., Melacci, A., Mele, E., Meliota, P., Menaspa, S., Meneghello, F., Merola, G., Merone, L., Metrucci, A., Mezzina, V., Micchi, A., Michielon, A., Migliore, N., Minero, G., Minotta, F., Mirandola, C., Mistrorigo, S., Modafferi, L., Moitre, R., Mola, E., Monachese, C., Mongiardini, C., Montagna, F., Montani, M., Montemurno, I., Montolli, R., Montorsi, S., Montresor, M., Monzani, M. G., Morabito, F., Mori, G., Moro, A., Mosca, M. F., Motti, F., Muddolon, L., Mugnai, M., Muscas, F., Naimoli, F., Nanci, G., Nargi, E., Nasorri, R., Nastrini, G., Negossi, M., Negrini, A., Negroni, A., Neola, V., Niccolini, F., Niro, C. M., Nosengo, C., Novella, G., Nuti, C., Obici, F., Olita, C., Oliverio, S. S., Olivieri, I., Oriente, S., Orlando, G., Paci, C., Pagano, G., Pagliara, C., Paita, G., Paladini, G., Paladino, G., Palano, T., Palatella, A., Palermo, P., Palmisano, M., Pando, P., Panessa, P., Panigo, F., Panozzo, G., Panvini, F., Panzieri, F., Panzino, A., Panzitta, F., Paoli, N., Papagna, R., Papaleo, M. G., Papalia, G., Parisi, R., Parotti, N., Parravicini, D., Passarella, P., Pastore, G. A., Patafio, M., Pavone, P., Pedroli, W., Pedroni, M., Pelligra, G., Pellizzari, M., Penati, A., Perlot, M., Perrone, A., Perrone, G., Peruzzi, P., Peselli, C., Petracchini, L., Petrera, L., Petrone, S., Peverelli, C., Pianorsi, F., Piazza, G. P., Piazzolla, G., Picci, A., Pienabarca, G., Pietronigro, T. P., Pignocchino, P., Pilone, R., Pinto, D., Pirovano, E., Pirrotta, D., Pisante, V., Pitotto, P., Pittari, L., Piva, A., Pizzoglio, A., Plantera, O. R., Plebani, W., Plessi, S., Podrecca, D., Poerio, V., Poggiani, F., Pogliani, W., Poli, L., Poloni, F. G., Porcelli, R., Porto, S., Pranzo, L., Prevedello, C., Profeta, C., Profico, D., Punzi, A., Quaglia, G. M., Racano, M., Raccone, A., Radice, F., Raho, C. A., Raimondi, R., Raino, M., Ramponi, R., Ramunni, A., Ramunni, A. L., Ravasio, F., Ravera, M., Re Sarto, G., Rebustello, G., Regazzoli, S., Restelli, C., Rezzonico, M., Ricchiuto, F., Rigo, S., Rigon, G., Rigon, R., Rinaldi, O. V., Rinaldi, M., Risplendente, P. G., Rispoli, M., Riundi, R., Riva, M. G., Rizzi, A. L., Rizzi, D., Rizzo, L. D., Rocchi, L., Rondinone, B., Rosa, B., Rosati, F., Roselli, F., Rossetti, A., Rossetti, C., Rossi, R., Rossi, P. R., Rossi, A., Rossi, C. L., Rossitto, A., Ruffini, R., Ruffo, A., Ruggio, S., Ruo, M., Russo, B., Russo, L., Russo, R., Russo, S., Russo, U., Russo, V., Ruta, G., Sacchi, F., Sacco Botto, F., Saia, A., Salladini, G., Salmoiraghi, S., Saluzzo, F., Salvatore, C., Salvatori, E., Salvio, G., Sandri, P., Sandrini, T., Sangermano, V., Santoni, N., Saracino, A. D., Saracino, A., Sarasin, P., Sardo Infirri, C., Sarri, B., Sartori, G., Sartori, N., Sauro, C., Scaglioni, M., Scalfi, C., Scamardella, A. M., Scandale, G., Scandone, L., Scannavini, G., Scarati, R., Scardi, A., Scarpa, F. M., Scazzi, P., Schifone, A., Schiroso, G., Scigliano, G., Scilla, A., Sciortino, M., Scolaro, G., Scollo, E., Scorretti, G., Sellitti, R., Selmo, A., Selvaggio, G., Sempio, A., Seren, F., Serio, L., Serra, C., Serra, L., Siciliano, D., Sideri, A., Sighele, M., Signore, R., Siliberto, F., Silvestro, M., Simioni, G., Simmini, G., Simonato, L., Sinchetto, F., Sizzano, E., Smajato, G., Smaldone, M., Sola, G., Sordillo, L., Sovran, C. S., Spagnul, P., Spano, F., Sproviero, S., Squintani, A., Stella, L., Stilo, V., Stocchiero, B., Stornello, M. C., Stracka, G., Strada, S., Stranieri, G., Stucci, N., Stufano, N., Suppa, A., Susca, V. G., Sutti, M., Taddei, M., Tagliabue, E., Tagliente, G., Talato, F., Talerico, P., Talia, R., Taranto, R., Tartaglia, M., Tauro, N., Tedesco, A., Tieri, P., Tirelli, M., Tocci, L., Todesco, P., Tognolo, M., Tomba, A., Tonello, P., Tonon, R., Toscano, L., Tosi, A., Tosi, G., Toso, S., Travaglio, P., Tremul, L., Tresso, C., Triacchini, P., Triggiano, L., Trigilio, A., Trimeloni, J., Tripicchio, G., Tritto, G. S., Trono, F., Trotta, E., Trotta, G., Tubertini, A., Turri, C., Turri, L., Tuttolani, M. P., Urago, M., Ursini, G., Valcanover, F., Valente, L., Valenti, M., Valentini, F., Vallone, G., Valz, P., Valzano, L., Vanin, V., Vatteroni, M., Vegetti, L., Vendrame, D., Veramonti, I., Veronelli, G., Vesco, A., Vicariotto, G., Vignale, G., Villa, P. L., Vinciguerra, R., Visco, A., Visentin, G., Visona, E., Vitali, E., Vitali, S., Vitti, F., Volpone, D. A., Zambon, N., Zammarrelli, A., Zanaboni, A., Zane, D., Zanetti, B., Zanibellato, R., Zappetti, M., Zappone, P., Zerilli, G., Zirino, V., Zoccali, R., Zuin, F., Altomonte, M., Anelli, N., Angio, F., Annale, P., Antonacci, S., Anzilotta, R., Bano, F., Basadonna, O., Beduschi, L., Becagli, P., Bellotti, G., Blotta, C., Bruno, G., Cappuccini, A., Caramatti, S., Cariolato, M. P., Castellana, M., Castellani, L., Catania, R., Chielli, A., Chinellato, A., Ciaccia, A., Clerici, E., Cocci, A., Costanzo, G., D'Ercole, F., De Stefano, G., Dece, F., Di Cicco, N., Di Marco, A., Donati Sarti, C., Draghi, E., Dusi, G., Esposito, V., Ferraro, L., Ferretti, A., Ferri, E., Foggetti, L., Foglia, A., Fonzi, E., Frau, G., Fuoco, M. R., Furci, G., Gallo, L., Garra, V., Giannini, A., Gris, A., Iacovino, R., Interrigi, R., Joppi, R., Laner, B., La Fortezza, G., La Padula, A., Lista, M. R., Lupi, G., Maffei, D., Maggioni, G., Magnani, L., Marrazzo, E., Marcon, L., Marino, V., Maroni, A., Martinelli, C., Mastandrea, E., Mastropierro, F., Meo, A. T., Mero, P., Minesso, E., Moschetta, V., Mosele, E., Nanni, C., Negretti, A., Nistico, C., Orsini, A., Osti, M., Pacilli, M. C., Pennestre, C., Picerno, G., Piol, K., Pivano, L., Pizzuti, E., Poggi, L., Poidomani, I., Pozzetto, M., Presti, M. L., Ravani, R., Recalenda, V., Romagnuolo, F., Rossignoli, S., Rossin, E., Sabatella, C., Sacco, F., Sanita, F., Sansone, E., Servadei, F., Sisto, M. T., Sorio, A., Sorrentino, A., Spinelli, E., Spolaor, A., Squillacioti, A., Stella, P., Talerico, A., Todisco, C., Vadino, M., and Zuliani, C.
- Subjects
Male ,medicine.medical_specialty ,Endocrinology, Diabetes and Metabolism ,Population ,030209 endocrinology & metabolism ,030204 cardiovascular system & hematology ,Overweight ,03 medical and health sciences ,0302 clinical medicine ,Endocrinology ,Prediction model ,Internal medicine ,Diabetes mellitus ,Internal Medicine ,Diabetes Mellitus ,Medicine ,Humans ,Multicenter Studies as Topic ,Myocardial infarction ,Risk factor ,education ,Stroke ,Aged ,Randomized Controlled Trials as Topic ,education.field_of_study ,Lifestyle habits ,business.industry ,Major cardiovascular events ,Atrial fibrillation ,General Medicine ,Middle Aged ,medicine.disease ,Cardiovascular Diseases ,Heart failure ,Physical therapy ,Female ,medicine.symptom ,business ,Diabetic Angiopathies - Abstract
To verify whether it is possible, in people with diabetes mellitus (DM) considered at very high cardiovascular (CV) risk, stratify this risk better and identify significant modifiable risk factor (including lifestyle habits) to help patients and clinicians improve CV prevention. People with DM and microvascular diseases or one or more CV risk factors (hypertension, hyperlipidemia, smoking, poor dietary habits, overweight, physical inactivity) included in the Risk and Prevention study were selected. We considered the combined endpoint of non-fatal acute myocardial infarction and stroke and CV death. A multivariate Cox proportional analysis was carried out to identify relevant predictors. We also used the RECPAM method to identify subgroups of patients at higher risk. In our study, the rate of major CV events was lower than expected (5 % in 5 years). Predictors of CV events were age, male, sex, heart failure, previous atherosclerotic disease, atrial fibrillation, insulin treatment, high HbA1c, heart rate and other CV diseases while being physically active was protective. RECPAM analysis indicated that history of atherosclerotic diseases and a low BMI defined worse prognosis (HR 4.51 95 % CI 3.04–6.69). Among subjects with no previous atherosclerotic disease, men with HbA1c more than 8 % were at higher CV risk (HR 2.77; 95 % CI 1.86–4.14) with respect to women. In this population, the rate of major CV events was lower than expected. This prediction model could help clinicians identify people with DM at higher CV risk and support them in achieving goals of physical activity and HbA1c.
- Published
- 2016
9. Distributed medical images analysis on a Grid infrastructure
- Author
-
Bellotti, R, Cerello, P, Tangaro, S, Bevilacqua, V, Castellano, M, Mastronardi, G, De Carlo, F, Bagnasco, S, Bottigli, U, Cataldo, R, Catanzariti, E, Cheran, Sc, Delogu, Pasquale, De Mitri, I, De Nunzio, G, Fantacci, MARIA EVELINA, Fauci, F, Gargano, G, Golosio, B, Indovina, Pl, Lauria, A, Lopez Torres, E, Magro, R, Masala, Gl, Massafra, R, Oliva, P, Martinez, Ap, Quarta, M, Raso, G, Retico, A, Sitta, M, Stumbo, S, Tata, A, Squarcia, S, Schenone, A, Molinari, E, Canesi, B., Bellotti, R., Cerello, P., Tangaro, S., Bevilacquan, V., Castellano, M., Mastronardi, G., DE CARLO, F., Bagnasco, S., Bottigli, U., Cataldo, R., Catanzariti, Ezio, Cheran, S. C., Delogu, P., DE MITRI, I., DE NUNZIO, G., Fantacci, M. E., Fauci, F., Gargano, G., Golosio, B., Indovina, P. L., Lauria, A., LOPEZ TORRES, E., Magro, R., Masala, G. L., Massafra, R., Oliva, P., PREITE MARTINEZ, A., Quarta, M., Raso, G., Retico, A., Sitta, M., Stumbo, S., Tata, A., Squarcia, S., Schenone, A., BELLOTTI R, CERELLO P, TANGARO S, BEVILACQUA V, CASTELLANO M, MASTRONARDI G, DE CARLO F, BAGNASCO S, BOTTIGLI U, CATALDO R, CATANZARITI E, CHERAN SC, DELOGU P, DE MITRI I, DE NUNZIO G, FANTACCI ME, FAUCI F, GARGANO G, GOLOSIO B, INDOVINA PL, LAURIA A, LOPEZ TORRES E, MAGRO R, MASALA GL, MASSAFRA R, OLIVA P, PREITE MARTINEZ A, QUARTA M, RASO G, RETICO A, SITTA M, STUMBO S, TATA A, SQUARCIA S, SCHENONE A, MOLINARI E, CANESI B, R., Bellotti, P., Cerello, S., Tangaro, V., Bevilacqua, M., Castellano, G., Mastronardi, F., DE CARLO, S., Bagnasco, U., Bottigli, Cataldo, Rosella, E., Catanzariti, S. C., Cheran, P., Delogu, DE MITRI, Ivan, DE NUNZIO, Giorgio, M. E., Fantacci, F., Fauci, G., Gargano, B., Golosio, P. L., Indovina, A., Lauria, E., LOPEZ TORRES, R., Magro, G. L., Masala, R., Massafra, P., Oliva, A., PREITE MARTINEZ, Quarta, Maurizio, G., Raso, A., Retico, M., Sitta, S., Stumbo, A., Tata, S., Squarcia, A., Schenone, E., Molinari, and B., Canesi
- Subjects
GRID ,Virtual Organization ,Medical Applications ,Computer Networks and Communications ,Computer science ,Virtual organization ,mammography ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,computer.software_genre ,virtual organization ,CAD ,medical applications ,Software ,Computer aided diagnosi ,medicine ,Mammography ,Computer vision ,Grid ,Lung tumor ,Distributed database ,medicine.diagnostic_test ,business.industry ,Digital imaging ,Hardware and Architecture ,Image analysi ,Artificial intelligence ,Data mining ,Alzheimer disease ,business ,computer - Abstract
In this paper medical applications on a Grid infrastructure, the MAGIC-5 Project, are presented and discussed. MAGIC-5 aims at developing Computer Aided Detection (CADe) software for the analysis of medical images on distributed databases by means of GRID Services. The use of automated systems for analyzing medical images improves radiologists’ performance; in addition, it could be of paramount importance in screening programs, due to the huge amount of data to check and the cost of related manpower. The need for acquiring and analyzing data stored in different locations requires the use of Grid Services for the management of distributed computing resources and data. Grid technologies allow remote image analysis and interactive online diagnosis, with a relevant reduction of the delays presently associated with the diagnosis in the screening programs. The MAGIC-5 project develops algorithms for the analysis of mammographies for breast cancer detection, Computed- Tomography (CT) images for lung cancer detection and Positron Emission Tomography (PET) images for the early diagnosis of Alzheimer Disease (AD). A Virtual Organization (VO) has been deployed, so that authorized users can share data and resources and implement the following use cases: screening, tele-training and tele-diagnosis for mammograms and lung CT scans, statistical diagnosis by comparison of candidates to a distributed data-set of negative PET scans for the diagnosis of the AD. A small-scale prototype of the required Grid functionality was already implemented for the analysis of digitized mammograms.
- Published
- 2006
10. Electron microscopy in support of laboratory measurements for the Mars Express space mission
- Author
-
D, ELIA M, BLANCO A, DE CARLO F, MARRA A. C, MARZO G. A, OROFINO, Vincenzo, POLITI R., FONTI, Sergio, D, Elia, M, Blanco, A, DE CARLO, F, Fonti, Sergio, MARRA A., C, MARZO G., A, Orofino, Vincenzo, and Politi, R.
- Published
- 2003
11. Measurements of spectral emissivity related to planetary missions
- Author
-
FONTI, Sergio, BLANCO A, BLECKA M. I, DE CARLO F, OROFINO, Vincenzo, Fonti, S, Blanco, A, BLECKA M., I, DE CARLO, F, Orofino, Vincenzo, and Fonti, Sergio
- Published
- 2002
12. Laboratory studies of carbonates in support to Mars exploration
- Author
-
BLANCO A, OROFINO, Vincenzo, DE CARLO F, D, ELIA M, MARRA A. C, MARZO G. A, POLITI R., FONTI, Sergio, Blanco, A, Fonti, Sergio, Orofino, Vincenzo, DE CARLO, F, D, Elia, M, MARRA A., C, MARZO G., A, and Politi, R.
- Published
- 2002
13. Spectroscopic search for signatures of fossils in terrestrial layered rock
- Author
-
POLITI R, MARZO G. A, BLANCO A, DE CARLO F, MARRA A. C, OROFINO, Vincenzo, FONTI, Sergio, Politi, R, MARZO G., A, Blanco, A, DE CARLO, F, Fonti, Sergio, MARRA A., C, and Orofino, Vincenzo
- Published
- 2002
14. Hemispherical reflectance of olivine samples weathered by acqueous alteration
- Author
-
POLITI R, BLANCO A, DE CARLO F, MARRA A. C, MARZO G. A, OROFINO, Vincenzo, FONTI, Sergio, Politi, R, Blanco, A, DE CARLO, F, Fonti, Sergio, MARRA A., C, MARZO G., A, and Orofino, Vincenzo
- Published
- 2002
15. Spectral emissivity as a tool for the interpretation of Martian data: a laboratory approach
- Author
-
FONTI, Sergio, BLANCO A, BLECKA M. I, DE CARLO F, OROFINO, Vincenzo, POLIMENO N., Fonti, Sergio, Blanco, A, BLECKA M., I, DE CARLO, F, Orofino, Vincenzo, and Polimeno, N.
- Published
- 2001
16. Ismenius Lacus, Mars: morphometric analisys of paleolake basins and search for carbonates
- Author
-
LEONE G, BLANCO A, DE CARLO F, OROFINO, Vincenzo, FONTI, Sergio, Leone, G, Blanco, A, DE CARLO, F, Fonti, Sergio, and Orofino, Vincenzo
- Published
- 2001
17. Ion cyclotron energy resonance: new trends in electromagnetic therapies. 5th Intern. Workshop on Biologiacal Effects Of Electromagnetic Fields
- Author
-
Foletti A., Ledda M., De Carlo F., et al, Grimaldi S., and Lisi A .
- Published
- 2008
18. Effect of low frequency electromagnetic field on primary mouse skeletal muscle differentiation
- Author
-
De Carlo F. Ledda M., Signori E., D'Emila E., Giuliani L., Grimaldi S., and Lisi A.
- Published
- 2008
19. Exposure to extremely low frequency electromagnetic field promote the expression of differentiation markers in human cardiac stem cells
- Author
-
Ledda M., De Carlo F., Gaetani R., Pozzi D., Barile L., Chimenti I., D'Emilia E., Giuliani L., Messina E., Gicomello A., Lisi A., and Grimaldi S.
- Published
- 2008
20. Low electromagnetic field induces differentiation on primary mouse skeletal muscle (C2C12)
- Author
-
Signori E.a, Ledda M.a, De Carlo F., Rosola E., D'Emilia E., Fazio V.M.b, Grimaldi S.c, and Lisi A.d
- Published
- 2006
21. Neutra Donor effect on ZrCl4 in olefin and styrene polymerizatio
- Author
-
Capacchione, Carmine, DE CARLO, F., Russo, C., D'Acunzi, M., Motta, Oriana, and Proto, Antonio
- Published
- 2003
22. Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution
- Author
-
Chu, Y. S., Yi, J. M., De Carlo, F., Shen, Q., Lee, Wah-Keat, Wu, H. J., Wang, C. L., Wang, J. Y., Liu, C. J., Wang, C. H., Wu, S. R., Chien, C. C., Hwu, Y., Tkachuk, A., Yun, W., Feser, M., Liang, K. S., Yang, C. S., Je, J. H., and Margaritondo, G.
- Subjects
E-Beam Lithography ,Fabrication ,CIBM-PC - Abstract
Substantial improvements in the nanofabrication and characteristics of gold Fresnel zone plates yielded unprecedented resolution levels in hard-x-ray microscopy. Tests performed on a variety of specimens with 8-10 keV photons demonstrated a first-order lateral resolution below 40 nm based on the Rayleigh criterion. Combined with the use of a phase contrast technique, this makes it possible to view features in the 30 nm range; good-quality images can be obtained at video rate, down to 50 ms/frame. The important repercussions on materials science, nanotechnology, and the life sciences are discussed. (C) 2008 American Institute of Physics.
23. A massive lesion detection algorithm in mammography
- Author
-
Robero Bellotti, G. Gargano, Francesco De Carlo, Stefano Bagnasco, Giuseppe Raso, S. C. Cheran, Giorgio De Nunzio, A. Lauria, R. Magro, Sonia Tangaro, R. Cataldo, Ivan De Mitri, Ernesto Lopez Torres, Francesco Fauci, Piergiorgio Cerello, G. Forni, FAUCI F, RASO G, MAGRO R, FORNI G, LAURIA A, BAGNASCO S, CERELLO P, CHERAN SC, LOPEZ TORRES E, BELLOTTI R, DE CARLO F, GARGANO G, TANGARO S, DE MITRI I, DE NUNZIO G, CATALDO R, F., Fauci, G., Raso, R., Magro, G., Forni, Lauria, Adele, S., Bagnasco, P., Cerello, S. C., Cheran, E., LOPEZ TORRES, R., Bellotti, F., DE CARLO, G., Gargano, S., Tangaro, I., DE MITRI, G., DE NUNZIO, R., Cataldo, Fauci, F, Raso, G, Magro, R, Forni, G, Lauria, A, Bagnasco, S, Cerello, P, Cheran, Sc, Torres, El, Bellotti, R, DE CARLO, F, Gargano, G, Tangaro, S, DE MITRI, Ivan, DE NUNZIO, Giorgio, and Cataldo, Rosella
- Subjects
Engineering ,Artificial neural network ,Pixel ,medicine.diagnostic_test ,business.industry ,CAD (Computer Aid Detection) ,Feature extraction ,Biophysics ,Neural Network ,General Physics and Astronomy ,General Medicine ,Software ,Dimension (vector space) ,medicine ,Kurtosis ,Mammography ,Radiology, Nuclear Medicine and imaging ,Computer vision ,Fraction (mathematics) ,Artificial intelligence ,business ,Algorithm - Abstract
A new algorithm for massive lesion detection in mammography is presented. The algorithm consists in three main steps : 1) reduction of the dimension of the image to be processed through the identifi cation of regions of interest (rois) as candidates for massive lesions ; 2) characterization of the roi by means of suitable feature extraction ; 3) pattern classifi cation through supervised neural networks. Suspect regions are detected by searching for local maxima of the pixel grey level intensity. A ring of increasing radius, centered on a maximum, is considered until the mean intensity in the ring decreases to a defi ned fraction of the maximum. The rois thus obtained are described by average, variance, skewness and kurtosis of the intensity distributions at diff erent fractions of the radius. A neural network approach is adopted to classify suspect pathological and healthy pattern. The software has been designed in the framework of the infn (Istituto Nazionale Fisica Nucleare) research project gpcalma (Grid Platform for calma) which recruits physicists and radiologists from diff erent Italian Research Institutions and hospitals to develop software for breast and lung cancer detection.
24. Hard-x-ray microscopy with Fresnel zone plates reaches 40nm Rayleigh resolution
- Author
-
C. H. Wang, Wenbing Yun, Yong S. Chu, Chian Liu, Chung-Shi Yang, M. Feser, Y. Hwu, A. Tkachuk, Syue-Ren Wu, Qiang Shen, Chia-Chi Chien, Junyue Wang, Giorgio Margaritondo, Cheng-Liang Wang, F. De Carlo, H. J. Wu, Wah-Keat Lee, Jung Ho Je, Jae-mock Yi, Keng S. Liang, Chu, Y S, Yi, J, De, Carlo F, Shen, Q, Lee, Wookyung, Wu, H, Wang, X, Wang, J, Liu, Chengfei, Wang, Chun, Wu, Yong, Chien, Chia-Chi, Hwu, Y, Tkachuk, A, Yun, W, Feser, M, Liang, Wen-Kuei, and Yang, C
- Subjects
Diffraction ,Physics ,Fresnel zone ,Physics and Astronomy (miscellaneous) ,business.industry ,Resolution (electron density) ,Fresnel lens ,law.invention ,symbols.namesake ,Nanolithography ,Optics ,law ,Microscopy ,symbols ,Rayleigh scattering ,business ,Fresnel diffraction - Abstract
Substantial improvements in the nanofabrication and characteristics of gold Fresnel zone plates yielded unprecedented resolution levels in hard-x-ray microscopy. Tests performed on a variety of specimens with 8-10keV photons demonstrated a first-order lateral resolution below 40nm based on the Rayleigh criterion. Combined with the use of a phase contrast technique, this makes it possible to view features in the 30nm range; good-quality images can be obtained at video rate, down to 50ms/frame. The important repercussions on materials science, nanotechnology, and the life sciences are discussed.
- Published
- 2008
- Full Text
- View/download PDF
25. Comparative Study of Feature classification Methods for Mass Lesion Recognition in Digitized Mammograms
- Author
-
Masala, G. L., Tangaro, S., Golosio, B., Oliva, P., Stumbo, S., Bellotti, R., Carlo, F., Gargano, G., Cascio, D., Fauci, F., Magro, R., Raso, G., Bottigli, U., Chincarini, A., Ivan De Mitri, Giorgio De Nunzio, Gori, I., Retico, A., Cerello, P., Cheran, S. C., Fulcheri, C., Lopez Torres, E., G. L., Masala, S., Tangaro, B., Golosio, P., Oliva, S., Stumbo, R., Bellotti, F., De Carlo, G., Gargano, D., Cascio, F., Fauci, R., Magro, G., Raso, U., Bottigli, A., Chincarini, DE MITRI, Ivan, DE NUNZIO, Giorgio, I., Gori, A., Retico, P., Cerello, S. C., Cheran, C., Fulcheri, E., Lopez Torres, MASALA, GL, TANGARO, S, GOLOSIO, B, OLIVA, P, STUMBO, S, BELLOTTI, R, DE CARLO, F, GARGANO, G, CASCIO, D, FAUCI F, MAGRO, R, RASO, G, BOTTIGLI, U, CHINCARINI A, DE MITRI, I, DE NUNZIO, G, GORI, I, RETICO, A, CERELLO, P, CHERAN, SC, FULCHERI, C, and LOPEZ TORRES, E
- Subjects
breast cancer ,Computer-aided diagnosis. Digital imaging. Image analysis. Mammography ,segmentation ,CAD systems, mammography ,classification system ,ROC curve - Abstract
In this work a comparison of different classification methods for the identification of mass lesions in digitized mammograms is performed. These methods, used in order to develop Computer Aided Detection (CAD) systems, have been implemented in the framework of the MAGIC-5 Collaboration. The system for identification of mass lesions is based on a three-step procedure: a) preprocessing and segmentation, b) region of interest (ROI) searching, c) feature extraction and classification. It was tested on a very large mammographic database (3369 mammographic images from 967 patients). Each ROI is characterized by eight features extracted from a co-occurrence matrix containing spatial statistics information on the ROI pixel grey tones. The reduction of false-positive cases is performed using a classification system. The classification systems we compared are: Multi Layer Perceptron (MLP), Probabilistic Neural Network (PNN), Radial Basis Function Network (RBF) and K-Nearest Neighbours classifiers (KNN). The results in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of nonpathological ROIs correctly classified) are presented. MLP and RBF outperform other classification algorithms by about 8% of the area under the ROC curve.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.