1. Detecci\'on Autom\'atica de Patolog\'ias en Notas Cl\'inicas en Espa\~nol Combinando Modelos de Lenguaje y Ontolog\'ias M\'edicos
- Author
-
Torre, Léon-Paul Schaub, Quirós, Pelayo, and Mieres, Helena García
- Subjects
Computer Science - Computation and Language ,I.2.7 - Abstract
In this paper we present a hybrid method for the automatic detection of dermatological pathologies in medical reports. We use a large language model combined with medical ontologies to predict, given a first appointment or follow-up medical report, the pathology a person may suffer from. The results show that teaching the model to learn the type, severity and location on the body of a dermatological pathology as well as in which order it has to learn these three features significantly increases its accuracy. The article presents the demonstration of state-of-the-art results for classification of medical texts with a precision of 0.84, micro and macro F1-score of 0.82 and 0.75, and makes both the method and the dataset used available to the community. -- En este art\'iculo presentamos un m\'etodo h\'ibrido para la detecci\'on autom\'atica de patolog\'ias dermatol\'ogicas en informes m\'edicos. Usamos un modelo de lenguaje amplio en espa\~nol combinado con ontolog\'ias m\'edicas para predecir, dado un informe m\'edico de primera cita o de seguimiento, la patolog\'ia del paciente. Los resultados muestran que el tipo, la gravedad y el sitio en el cuerpo de una patolog\'ia dermatol\'ogica, as\'i como en qu\'e orden tiene un modelo que aprender esas tres caracter\'isticas, aumentan su precisi\'on. El art\'iculo presenta la demostraci\'on de resultados comparables al estado del arte de clasificaci\'on de textos m\'edicos con una precisi\'on de 0.84, micro y macro F1-score de 0.82 y 0.75, y deja a disposici\'on de la comunidad tanto el m\'etodo como el conjunto de datos utilizado., Comment: 22 pages, in Spanish language, 6 figures, Proceedings of the 40th venue of the SEPLN
- Published
- 2024