Resumen La Pirroloquinolinaquinona (PQQ) es una molécula termoestable y soluble en agua, perteneciente a la familia de cofactores del tipo oquinona, que funciona como cofactor para enzimas como glucosa, metanol, sorbitol y glicerol deshidrogenasas, a las cuales se une de manera covalente. Se estima que se requieren aproximadamente 7 genes para la síntesis de este cofactor, sin embargo, el número y disposición de dichos genes es variable entre géneros y especies, además de no estar completamente esclarecida la vía de biosíntesis ni las características de las enzimas participantes. La PQQ ha sido encontrado en procariotes y eucariotes, pero su síntesis se limita a los primeros. La PQQ está involucrado en diversos mecanismos relacionados con la promoción del crecimiento vegetal, como lo es la solubilización de fosfatos y la capacidad biocontroladora, sin embargo, aparentemente hay otros mecanismos de promoción de crecimiento de plantas donde podría estar implicado y en este trabajo se muestra un panorama general del estado del arte de la implicación de este cofactor con las capacidades de las bacterias para estimular el crecimiento de las plantas. Abstract Pyrroloquinoline quinone (PQQ) is a thermostable and water-soluble molecule, which is within the o-quinone family cofactors. PQQ is a cofactor for enzymes like glucose, methanol, sorbitol and glycerol dehydrogenases, forming a covalent bond. Approximately 7 genes are required for biosynthesis of this cofactor; nevertheless, the number and disposition of these are variable, even within genera and species. This way is not totally elucidated. PQQ can be produced by prokaryotes but not by eukaryotes and this cofactor is involved in plant growth promotion, phosphate solubilizing and biocontrol, nevertheless, are other ways in which PQQ could be involved. This review shows a global vision of relationship between PQQ and beneficial bacteria for promote plant growth., {"references":["Patrap Singh R., Jain D.A. Evaluation of antimicrobial activity of alcoholic and aqueous extracts of five plants used in traditional medicine in North India. Int J Pharmtech Res 2011; 3(1): 376-80.","Stites T. E., Mitchell A. E., Rucker R. B. Physiological importance of quinoenzymes and the o-quinone family of cofactors.J Nutr 2000; 130(4): 719-27.","Anthony C., Gosh M. The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 1998; 69(1): 1-21.","Duine J. A. The PQQ story. J Biosci Bioeng 1999; 88(3): 231-6","Matsushita K., Toyama H., Yamada M., Adachi O. Quinoproteins: structure function and biotechnological applications. Appl Microbiol Biotechnol 2002; 50(1): 13-22.","Miyasaki T., Sugisawa T., Hoshino T. Pyrroloquinolinequinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of L- sorbosone to L-ascorbic acid. Appl Environ Microbiol 2006; 72 (2): 1487-95.","Ikemoto K., Sakamoto H., Nakano M. Crystal structure and characterization of pyrroloquinolinequinone disodium trihydrate. Chem Cent J 2012; 6: 57.","McIntire W. S. Quinoproteins. FASEB J 1994; 8(8): 513-21.","Paz M. A., Flückiger R., Gallop P. M. Comment: redox-cycling is a property of PQQ but not of ascorbate. FEBS Lett 1990; 264(2): 283-84.","https://www.jbc.org/content/266/2/689.long Paz M. A., Flückiger R., Boak A., Kagan H. M., Gallop P. M. Specific detection of quinoproteins by redox-cycling staining. J Biol Chem 1991; 266(2): 689-92.","Van Kleef M. A. G., Duine J. A. Factor relevant in bacterial pyrroloquinolinequinone production. Appl Environ Microbiol 1989; 55(5): 1209-13.","Urakami T., Yashima K., Kobayashi H., Yoshida A., Ito-Yoshida C. Production of pyrroloquinolinequinone by using methanol- utilizing bacteria. Appl Environ Microbiol 1992; 58(12): 3970.","Misra H. S., Rajpurohit Y. S., Khairnar N. P. Pyrroloquinoline-quinone and its versatiles roles in biological processes. J Biosci 2012; 37(2): 313-25.","Ameyama M., Matsushita K., Ohno Y., Shinagawa E., Adachi O. Existence of a novel prostetic group, PQQ, in membrane-bound, electron transport chain-linked, primary deshidrogenases of oxidatve bacteria. FEBS Lett 1981; 130(2): 179-183.","Gómez-Manzano S., Contreras-Centella M., González-Valdés A., Sosa-Torres M., Arreguín- Espinoza R., Escamilla-Marbán E.The PQQ- alcohol dehydrogenase of Gluconacetobacter diazotrophicus. J Food Microbiol 2008;125(1): 71-78.","Bauerly K., Harris C., Chowanadisai W., Graham J., Havel P. J., Tchaparian E., Satre M., Karliner J. S., Rucker R. B. Altering pyrroloquinolinequinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS One 2011;6(7): e21779.","He K., Nukada H., Urakami T., Murphy M. P. Antioxidant and pro-oxidant properties of pyrroloquinolinequinone (PQQ): implications for its function in biological systems. Biochem Pharmacol 2003; 65(1): 67-74.","Noji N., Nakamura T., Kitahata N., Taguchi K., Kudo T., Yoshida S., et al., Simple and sensitive method for pyrroloquinolinequinone (PQQ) analysis in various foods using liquid cromatography/electrospray-ionization tandem mass spectrometry. J Agric Food Chem 2007; 55(18): 7258-63.","Rucker R., Chowanadisai W., Nakano M. Potential physiological importance of pyrroloquinolinequinone. Altern Med Rev 2009; 14(3): 268-77.","Shen Yao-Quing., Bonnot F., Imsand E. M., RoseFigura J. M., Sjolander K., Klinman J. P. Distribution and properties of the genes encoding the biosynthesis of bacterial cofactor, Pyrroloquinolinequinone. Biochem 2012; 51(11): 2265-75.","Klinman J. P., Bonnot F. The intrigues and intricacies of the biosynthetic pathways for enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ and LTQ. Chem Rev 2014; 114(8): 4343-65.","Schnider U., Keel C.,Voisard C., Défago G., Haas D. Tn-5 directed cloning of PQQ genes from Pseudomonas fluorescens CHA0: mutational inactivation of the genes results in overproduction of antibiotic pyoluteorin. Appl Environ Microbiol 1995; 61(11): 3856-64.","Choi O., Kim J., Kim J-G., Jeong Y., Moon J. Park C. S., Hwang I. Pyrroloquinolinequinone is a plant growth factor produced by Pseudomonas fluorescens B16. Plant Physiol 2008; 146(2): 657-68.","Puehringer S., Metlitzky M., Schwarzenbacher R. The pyrroloquinolinequinone biosynthesis pathway revisited: a structural approach. BMC 2008; 9(8): 1471-2091.","Toyama H., Lidstrom M. E. pqqA is not required for biosynthesis of pyrroloquinolinequinone in Methylobacterium extorquens AM1. Microbiol 1998; 114: 183-91.","Ge X., Wang W., Du B., Wang J., Xiong X., Zhang W. Multiple pqqA genes respond differently to environment and one contributes dominantly to pyrroloquinolinequinone synthesis. J Basic Microbiol 2013; 55(3): 312-23.","Velterop J. S., Sellink E., Meulenberg J. J. M., David S., Bulder I., Postma P. W. Synthesis of pyrroloquinolinequinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 1995; 177(17): 5088-98.","MetlitzkyM., Puehringer S., Fisher S. J. Crystal structure of PqqB from Pseudomonas putida at 2.2 A resolution. J Biophys Chem 2012; 3(2): 206-10.","Meyer J. B., Frapolli M., Keel C., Maurhofer M. Pyrroloquinolinequinone by sinthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate- solubilizing Pseudomonads. Appl Environ Microbiol 2011; 77(20): 7345-54.","Tsai T. Y., Yang C. Y., Shih H. L., Wang A. H. J., Chou S. H. Xanthomonas campestris PqqD in the pyrroloquinolinequinone biosynthesis addopts a novel saddle like fold that possibly serves as a PQQ carrier. Proteins Struct Funct Bioinformatics 2009; 76(4): 1042-8.","Wecksler S. R., Stoll S., Iavarone A. T., Imsand E. M., Tran H., Britt R. D., Klinman J. P. Interaction of PqqE and PqqD in the pyrroloquinolinequinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chem Commun 2010; 46: 7031-3.","Wecksler S. R., Stoll S., Tran H., Magnusson O. T., Wu S. P., King D., Britt R. D., Klinman J. P. Pyrroloquinolinequinone biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methonine enzyme. Biochem 2009; 48(42): 10151-61.","Vivanco-Calixto R., Molina-Romero D., Morales-García Y. E., Quintero-Hernández V., Munive-Hernández A., Baez-Rogelio A., Muñoz-Rojas J. Reto agrobiotecnológico: inoculantes bacterianos de segunda generación. Alianzas y Tendencias 2016; 1(1): 9-19.","Molina-Romero D., Bustillos-Cristales M. R., Rodríguez-Andrade O., Morales-García Y. E., Santiago-Saenz\tY., Castañeda-Lucio M., Muñoz-Rojas J. 2015. Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Biológicas 17(2): 24-34.","Molina-Romero D., Morales-García Y. E., Hernández-Tenorio A. L., Castañeda-Lucio M., Netzahuatl-Muñoz A. R., Muñoz-Rojas J. 2017. Pseudomonas putida estimula el crecimiento de maíz en función de la temperatura. Aceptado para su publicación en la Revista Iberoamericana de Ciencias, 8 de febrero de 2017.","Pazos-Rojas L. A., Marín-Cevada V., Morales García Y. E., Baez A., Villalobos-López M. A., Pérez-Santos M., Muñoz-Rojas J. Uso de microorganismos benéficos para reducir los daños causados por la revolución verde. Revista Iberoamericana de Ciencias 2016; 3(7): 72-85.","Singh B. K., Trivedi P. Microbiome and the future for food and nutrient security. Microb Biotechnol 2016; Epub Ahead of Print, doi: 10.1111/1751-7915.12592.","Baez-Rogelio A., Morales-García Y. E., Quintero-Hernández V., Muñoz-Rojas J. Next generation of microbial inoculants for agriculture bioremediation. Microbial Biotechnology 2016; Epub Ahead of Print, doi: 10.1111/1751-7915.12448.","Van Schie B. J., Hellingwerf K. J., Van Dikjen J. P., Elferink M. G. L., Van Dijl J. M., Kuenen J. G., Konings W. N. Energy transduction by electron transfer via pyrroloquinoline-quinone- dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa and Acinetobacter calcoaceticus (var. lwoffi). J Bacteriol 1985; 163(2): 493-9.","Matsushita K., Arents J. C., Bader R., Yamada M., Adachi O., Postma P. W. Escherichia coli is unable to produce pyrroloquinolinequinone (PQQ). Microbiol 1997; 143: 3149-56.","De Jonge R., De Mattos T. M. J., Stock J. B., Neijssel O. M. Pyrroloquinolinequinone, a chemotactic attractant for Escherichia coli. J Bacteriol 1996; 178(4): 1224-6.","Sode K., Ito K., Witarto A. B., Watanabe K., Yosgida H., Postma P. Increased production of recombinant pyrroloquinolinequinone (PQQ) glucose dehydrogenase by metabolically engineered Escherichia coli strain capable of PQQ biosynthesis. J Biotechol 1996; 49(1-3): 239-43.","Rodríguez H., Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 1999; 17(4-5): 319-39.","Khan M. S., Zaidi A.,Ahemad M., Oves M., Wani P. A. Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agron Soil Sci 2010; 56(1): 73-98.","Sharma S. B., Sayyed R. Z., Trivedi M. H., Gobi T. A. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency agricultural soils. Springer Plus 2013; 2: 587.","Rodríguez H., Fraga R., González T., Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 2006; 287: 15-21.","Oteino N., Lally R. D., Kiwanuka S., Lloyd A., Ryan D., Germaine K. J., Dowling D. N. Plant growth promotion induced by phosphate solubilization endophytic Pseudomonas isolates. Front Microbiol 2015; 6: 745.","Rodríguez H., González T., Selman G. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 2000; 84(2): 155-61.","FarhatM. B., Fourati A., Chouayekh H. Coexpression of the pyrroloquinolinequinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli. Appl Biochem Biotechnol 2013; 170(7): 1738-50.","Patel A. H., Chovatia V., Shah S. Expression of pyrroloquinolinequinone in Rhizobium leguminosarum for phosphate solubilization. Environ Ecol 2015; 33(2): 621-4.","Wagh J., Shah S., Bhandhari P., Archana G., Kumar G. N. Heterologous expression of pyrroloquinolinequinone (pqq) gene cluster confers mineral phosphate solulilization ability to Herbaspirillum seropedicae Z67. Appl Microbiol Biotechnol 2014; 98(11): 5117-29.","Han K. H., Kim C. H., Lee J. H., Park J. Y., Cho S. M., Park S. K., Kim K. Y., Krishnan H. B., Kim Y. C. Inactivation of pqq genes of Enterobacter intermedium 60-2G reduces antifungal activity and induction of systemic resistance. FEMS Microbiol Lett 2008; 282(1): 140-6.","Li L., Jiao Z., Hale L., Wu W., Guo Y. Disruption of gene pqqA or pqqB reduces plant growth promotion actitvity and biocontrol of crown gall desease by Rahnella aquatilis HX2. PLoS One 2014; 9(12): e115010.","Kremmydas G. F., Tampakaki A. P., Georgakopoulos D. G. Characterization of the biocontrol activity of Pseudomonas fluorescens strain X reveals novel genes regulated byglucose. PLoSOne 2013; 8(4): e61808.","Ahmed N., Shahab S. Involvement of bacterial pyrroloquinolinequinone in plant growth promotion: a novel discovery. Biotechnol Genet Eng Rev 2010; 8: 57-61."]}