Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE A systematic theoretical study of the local symmetry of the Eu3+ in (LiF, EuF3 and the family AF2 (A = Ca, Sr and Ba)) fluorides crystals using crystal field theory applied to lanthanides along with the atomistic computational modelling is presented. The Simple Overlap Model with the Method Equivalent Nearest Neighbours was used in the TCC and in the Auzel-Malta equation to calculate the energy sublevels of the 7F1, 7F2, 5D1 multiplets and the 7F1 split, using a set of phenomenological charge factors. Employing a set of Buckingham short-range interatomic potential parameters and the shell-model, the lattice parameters and the unit cell volume of these crystals were reproduced satisfactorily in good agreement with the experimental data. Because of this, energy calculations of intrinsic, extrinsic bound and unbound defects were obtained using the GULP computational code. The LiF was studied in three situations. In the first case of doping with low concentrations of Eu3+, this trivalent lanthanide occupies a local symmetry without an inversion center because the 0 - 2 transition is more intense than the 0 - 1 transition, in which we indicated the formation of a a-EuF3 polymorphic phase. Thus, with a combination of non-null crystal field parameters, in this case the slightly distorted c2v symmetry is most likely. In the second case of doping with high concentrations of Eu3+ and with 0 - 2 less intense than 0 - 1, and due to the asymmetry of the emission spectrum a graphic deconvolution was performed and two peaks in these transitions were obtained. In this case, the Eu3+ occupies a symmetry with a distorted inversion center, in which we indicated a combination of D4, DAD and D2d symmetries. In the third case and through the atomistic computational simulation with the lowest solution energy by defect, the LiF Anti-Schottky is more favourable intrinsically and the Eu3+ replaces the Li+ site compensated by lithium vacancies extrinsically. By the computationally obtained local structure, the lanthanide occupies a slightly distorted D4 symmetry. The EuF3 was analyzed with two and three lines observed at the 0 - 1 transition. A combination of D3d with D3 and C2 with C2 symmetries are likely for two and three lines, respectively. In the AF2 crystals (A = Ca, Sr and Ba) and considering the bound extrinsic defects, the Eu3+ replaces the site of the A2+ compensated by cationic vacancies and occupies a distorted s6 local symmetry. In all spectroscopic analyses, the B2 0 signal was investigated. A new equation to calculate the charge of the Eu3+ was proposed considering the effects of covalence on the chemical bonding, Brik-Avram overlap integrals, octet rule and chemical valence of the nearest neighbour. The magnitude of this charge was compared with that obtained through the equation presented by the Batista-Longo Improved Model. This indicated that in the Eu3+ - PV interactions (PV = F-, O 2-), the charge is closer to the PV and around the interatomic middle distance. All theoretical calculations performed in this work are in good agreement with the experimental data. Um estudo teórico sistemático da simetria local do Eu3+ em cristais fluoretos (LiF, EuF3 e a família AF2 (A = Ca, Sr e Ba)) usando a teoria de campo de cristalino (TCC) aplicada a lantanídeos juntamente com a modelagem computacional atomística é apresentado. O Modelo de Recobrimento Simples com o Método dos Primeiros Vizinhos Equivalentes foi empregado na TCC e na equação Auzel-Malta para calcular os subníveis de energia dos multipletos 7F1, 7F2, 5D1 e o desdobramento do 7F1, usando um conjunto de fatores de carga fenomenológicos. Empregando um conjunto de parâmetros de potenciais interatômicos de curto alcance do tipo Buckingham e o shell-model, os parâmetros de rede e o volume da célula unitária desses cristais foram reproduzidos satisfatoriamente em boa concordância com os dados experimentais. Em vista disso, cálculos de energia de defeitos intrínsecos, extrínsecos ligados e não-ligados foram obtidos por meio do código computacional GULP. O LiF foi estudado em três situações. No primeiro caso de dopagem com baixas concentrações de Eu3+, este lantanídeo trivalente ocupa uma simetria local sem centro de inversão em razão da transição 0 - 2 ser mais intensa que a transição 0 - 1, na qual indicamos a formação de uma fase polimórfica a-EuF3. Assim, com uma combinação de parâmetros de campo cristalino não-nulos, nesse caso a simetria c2v levemente distorcida é mais provável. Em segundo caso de dopagem com altas concentrações de Eu3+ e com a 0 - 2 menos intensa que a 0 - 1 e devido à assimetria do espectro de emissão, uma deconvolução gráfica foi realizada e dois picos nessas transições foram obtidos. Nesse caso o Eu3+ ocupa uma simetria com centro de inversão distorcido, na qual indicamos uma combinação de simetrias D4, DAd e D2d. Em terceiro caso e por meio da simulação computacional atomística com a menor energia de solução por defeito, o Anti-Schottky de LiF é mais favorável intrinsicamente e o Eu3+ substitui o sítio do Li+ compensado por vacâncias de lítio de forma extrínseca. Com a estrutura local obtida computacionalmente, o lantanídeo ocupa uma simetria D4 levemente distorcida. O EuF3 foi analisado com duas e três linhas observadas na transição 0 - 1. Uma combinação das simetrias D3d com D3 e C2 com C2 são prováveis para duas e três linhas, respectivamente. Nos cristais AF2 (A = Ca, Sr e Ba) e considerando os defeitos extrínsecos ligados, o Eu3+ substitui o sítio do A2+ compensado por vacâncias catiônicas e ocupa uma simetria local s6 distorcida. Em todas as análises espectroscópicas, o sinal do B2 0 foi investigado. Uma nova equação para calcular a carga do Eu3+ foi proposta considerando os efeitos de covalência na ligação química, integrais de recobrimento de Brik-Avram, regra do octeto e valência química do primeiro vizinho. A magnitude dessa carga foi comparada com a obtida por meio da equação apresentada pelo Modelo Aprimorado Batista-Longo. Isso indicou que nas interações Eu3+ - PV (PV = F−, O2−), a carga está mais próxima do PV e em torno da meia distância interatômica. Todos os cálculos teóricos realizados neste trabalho estão em bom acordo com os dados experimentais. São Cristóvão, SE