1. Kodierung von Gaußmaßen
- Author
-
Fehringer, Franz, Scheutzow, Michael, and Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften
- Subjects
ddc:510 - Abstract
Es sei $gamma$ ein Gaußmaß auf der Borelschen $sigma$-Algebra $mathcal B$ des separablen Banachraums $B$. Für $X:Omega o B$ gelte $P_X=gamma$. Wir untersuchen den mittleren Fehler, der bei Kodierung von $gamma$ respektive $X$ mit $Ninmathbb N$ Punkten entsteht, und bestimmen untere und obere Abschätzungen für die Asymptotik ($N oinfty$) dieses Fehlers. Hierbei betrachten wir zu $r>0$ Gütekriterien wie folgt: Deterministische Kodierung $delta_2(N,r) := inf_{y_1,ldots,y_Nin B}Emin_{k=1,ldots,N} X-y_k ^r.$ Zufällige Kodierung $delta_3(N,r) := inf_ u Emin_{k=1,ldots,N} X-Y_k ^r.$ Die $(Y_k)$ seien hierbei i.i.d., unabhängig von $X$, und nach $ u$ verteilt. Das Infimum wird über alle Wahrscheinlichkeitsmaße $ u$ gebildet. Für das Gütekriterium $delta_4(cdot,r)$ wird ausgehend von der Definition von $delta_3(cdot,r)$ $ u$ nicht optimal, sondern $ u=gamma$ gewählt. Das Gütekriterium $delta_1(cdot,r)$ ergibt sich aus der Quellkodierungstheorie nach Shannon. Es gilt $delta_1(cdot,r) le delta_2(cdot,r) le delta_3(cdot,r) le delta_4(cdot,r).$ Wir stellen folgenden Zusammenhang zwischen der Asymptotik von $delta_4(cdot,r)$ und den logarithmischen kleinen Abweichungen von $gamma$ her: Es gebe $kappa,a>0$ und $binR$ mit $psi(varepsilon) := -log P{ X 1$. Let $gamma$ be a Gaussian measure on the Borel $sigma$-algebra $mathcal B$ of the separable Banach space $B$. Let $X:Omega o B$ with $P_X=gamma$. We investigate the average error in coding $gamma$ resp. $X$ with $Ninmathbb N$ points and obtain lower and upper bounds for the error asymptotics ($N oinfty$). We consider, given $r>0$, fidelity criterions as follows: Deterministic Coding $delta_2(N,r) := inf_{y_1,ldots,y_Nin B}Emin_{k=1,ldots,N} X-y_k ^r.$ Random Coding $delta_3(N,r) := inf_ u Emin_{k=1,ldots,N} X-Y_k ^r.$ The $(Y_k)$ above are i.i.d., independent of $X$, and distributed according to $ u$. The infimum is taken with respect to all probability measures $ u$. For the fidelity criterion $delta_4(cdot,r)$, starting from the definition of $delta_3(cdot,r)$, $ u$ is not chosen optimal, but as $ u=gamma$. The fidelity criterion $delta_1(cdot,r)$ is given according to the source coding theory of Shannon. The fidelity criterions are connected through $delta_1(cdot,r) le delta_2(cdot,r) le delta_3(cdot,r) le delta_4(cdot,r).$ We obtain the following connection between the asymptotics of $delta_4(cdot,r)$ and the den logarithmic small deviations of $gamma$: Let $kappa,a>0$ and $binR$ with $psi(varepsilon) := -log P{ X 1$.
- Published
- 2001