Back to Search Start Over

Konjugation stochastischer und zufälliger stationärer Differentialgleichungen und eine Version des lokalen Satzes von Hartman-Grobman für stochastische Differentialgleichungen

Authors :
Lederer, Christian
Arnold, Ludwig
Scheutzow, Michael
Imkeller, Peter
Publication Year :
2001
Publisher :
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2001.

Abstract

Für zufällige dynamische Systeme mit stetiger Zeit existieren zwei wichtige Klassen von Generatoren: Zum einen stationäre zufällige ifferentialgleichungen, i.e. gewöhnliche Differentialgleichungen, die von einem stationärer zufälligen Vektorfeld getrieben werden, und zum anderen stochastische Stratonovichdifferentialgleichungen mit weißem Rauschen. Während die erste Klasse sich gut in den ergodentheoretischen Rahmen der Theorie der zufälligen dynamischen Systeme einfügt, widersetzte sich die zweite Klasse lange Zeit der dynamischen Untersuchung aufgrund des "Konflikts zwischen Ergodentheorie und stochastischer Analysis". In dieser Arbeit wird gezeigt, daß beide Klassen von zufälligen dynamischen Systemen nicht wesentlich verschieden sind, genauer: Zu jeder stochastischen Stratonovichdifferentialgleichung mit weißem Rauschen (unter den üblichen Regularitätsforderungen an die Vektorfelder, die die Existenz von Flüssen garantieren) existiert eine stationäre zufällige Differentialgleichung derart, daß die erzeugten zufälligen dynamischen Systeme konjugiert sind. Als Anwendung wird eine Version des lokalen Linearisierungssatzes von Hartman/Grobman für stochastische Stratonovichdifferentialgleichungen bewiesen.<br />For continuous time random dynamical systems there exist two important classes of generators: on the one hand stationary random differential quations, i.e. ordinary differential equations driven by a stationary random vector field, and on the other hand stochastic Stratonovich differential equations with white noise. While the first class fits well into the framework of the theory of random dynamical systems, the second class resisted for a long time the dynamical investigation due to the "conflict between ergodic theory and stochastic analysis". The main result of this thesis is that both classes of random dynamical systems are not essentially distinct, more precisely: For each stochastic Stratonovich differential equation with white noise (under usual regularity assumptions) there exists a stationary random differential equation such that the corresponding random dynamical systems are conjugate. As an application a version of the local Hartman/Grobman theorem for stochastic differential equations is proved.

Details

Language :
German
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....a39c4932ef4b00e3280854c15ecc76f1