Pascaline Auroy, Vincent Chochois, Emmanuelle Billon, Yonghua Li-Beisson, David Dauvillée, Miriam Schulz-Raffelt, Stéphan Cuiné, Gilles Peltier, Environnement, Bioénergie, Microalgues et Plantes (EBMP), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Support was also provided by the HélioBiotec platform (funded by the European Regional Development Fund, the Région Provence Alpes Côte d’Azur, the French Ministry of Research, and the 'Commissariat à l’Energie Atomique et aux Energies Alternatives')., ANR-08-BIOE-0002,ALGOMICS,ETUDES GLOBALES DE LA CONVERSION ET DU STOCKAGE DE L'ENERGIE CHEZ LES MICROALGUES(2008), ANR-10-BIOE-0004,Algo-H2,Optimisations génétiques, métaboliques, et procédé de la photobioproduction d'hydrogène par la microalgue verte Chlamydomonas reinhardtii(2010), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), CNRS, Université de Lille, Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) [BIAM], Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 [UGSF], Bioénergie et Microalgues (EBM), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), ANR: ALGOH2,Optimisations génétiques, métaboliques, et procédé de photobioproduction d’hydrogène par la microalgue verte Chlamydomonas reinhardtii, and ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011)
Background Because of their high biomass productivity and their ability to accumulate high levels of energy-rich reserve compounds such as oils or starch, microalgae represent a promising feedstock for the production of biofuel. Accumulation of reserve compounds takes place when microalgae face adverse situations such as nutrient shortage, conditions which also provoke a stop in cell division, and down-regulation of photosynthesis. Despite growing interest in microalgal biofuels, little is known about molecular mechanisms controlling carbon reserve formation. In order to discover new regulatory mechanisms, and identify genes of interest to boost the potential of microalgae for biofuel production, we developed a forward genetic approach in the model microalga Chlamydomonas reinhardtii. Results By screening an insertional mutant library on the ability of mutants to accumulate and re-mobilize reserve compounds, we isolated a Chlamydomonas mutant (starch degradation 1, std1) deficient for a dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK). The std1 mutant accumulates higher levels of starch and oil than wild-type and maintains a higher photosynthetic activity under nitrogen starvation. Phylogenetic analysis revealed that this kinase (named DYRKP) belongs to a plant-specific subgroup of the evolutionarily conserved DYRK kinase family. Furthermore, hyper-accumulation of storage compounds occurs in std1 mostly under low light in photoautotrophic condition, suggesting that the kinase normally acts under conditions of low energy status to limit reserve accumulation. Conclusions The DYRKP kinase is proposed to act as a negative regulator of the sink capacity of photosynthetic cells that integrates nutrient and energy signals. Inactivation of the kinase strongly boosts accumulation of reserve compounds under photoautotrophic nitrogen deprivation and allows maintaining high photosynthetic activity. The DYRKP kinase therefore represents an attractive target for improving the energy density of microalgae or crop plants. Electronic supplementary material The online version of this article (doi:10.1186/s13068-016-0469-2) contains supplementary material, which is available to authorized users.