126 results on '"Rust, N"'
Search Results
2. Commissioning and initial operation of the W7-X neutral beam injection heating system
- Author
-
McNeely, P., Äkäslompolo, S., Auerweck, W., Drider, Y., Ford, O.P., Hartmann, D.A., Heinemann, B., Heinrich, S., Hopf, C., Kairys, R., Obermayer, S., Riedl, R., Rong, P., Rust, N., Schroeder, R., and Wolf, R.C.
- Published
- 2020
- Full Text
- View/download PDF
3. Bayesian inference of electron density and ion temperature profiles from neutral beam and halo Balmer- α emission at Wendelstein 7-X.
- Author
-
Bannmann, S, Ford, O, Hoefel, U, Poloskei, P Zs, Pavone, A, Kwak, S, Svensson, J, Lazerson, S, McNeely, P, Rust, N, Hartmann, D, Pasch, E, Fuchert, G, Langenberg, A, Pablant, N, Brunner, K J, and Wolf, R C
- Subjects
PLASMA beam injection heating ,NEUTRAL beams ,ELECTRON density ,ION temperature ,ELECTRON distribution ,BAYESIAN field theory - Abstract
By employing Bayesian inference techniques, the full electron density profile from the plasma core to the edge of Wendelstein 7-X (W7-X) is inferred solely from neutral hydrogen beam and halo Balmer- α (H α) emission data. The halo is a cloud of neutrals forming in the vicinity of the injected neutral beam due to multiple charge exchange reactions. W7-X is equipped with several neutral hydrogen beam heating sources and an H α spectroscopy system that views these sources from different angles and penetration depths in the plasma. As the beam and halo emission form complex spectra for each spatial point that are non-linearly dependent on the plasma density profile and other parameters, a complete model from the neutral beam injection and halo formation through to the spectroscopic measurements is required. The model is used here to infer electron density profiles for a range of common W7-X plasma scenarios. The inferred profiles show good agreement with profiles determined by the Thomson scattering and interferometry diagnostics across a broad range of absolute densities without any changes to the input or fitting parameters. The time evolution of the density profile in a discharge with continuous core density peaking is successfully reconstructed, demonstrating sufficient spatial resolution to infer strongly shaped profiles. Furthermore, it is shown as a proof of concept that the model is also able to infer the main ion temperature profile using the same data set. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. W7-X NBI beam dump thermocouple measurements as safety interlock
- Author
-
van Eeten, Paul, Kallmeyer, J.P., McNeely, P., Rust, N., Hartmann, D., Schacht, J., Naujoks, D., Degenkolbe, S., Vilbrandt, R., and Bosch, H.S.
- Published
- 2019
- Full Text
- View/download PDF
5. Predictive simulations of NBI ion power load to the ICRH antenna in Wendelstein 7-X
- Author
-
Kontula, J., Äkäslompolo, S., Ikäheimo, A., Lazerson, S., Kurki-Suonio, T., Hartmann, D., Rust, N., McNeely, P., Kazakov, Ye O., Ongena, J., W7X-Team, Department of Applied Physics, Max-Planck-Institut für Plasmaphysik, Fusion and Plasma Physics, Royal Military Academy, Aalto-yliopisto, Aalto University, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Technology ,stellarator ,Nuclear Energy and Engineering ,ASCOT ,NBI ,Wendelstein 7-X ,fast ions ,Condensed Matter Physics ,ddc:600 ,ICRH - Abstract
Funding Information: The calculations were performed on Marconi-Fusion, the High Performance Computer at the CINECA headquarters in Bologna (Italy). The computational resources provided by Aalto Science-IT project are also acknowledged. This work was partially funded by the Academy of Finland Project No. 298126. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2022 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. | openaire: EC/H2020/633053/EU//EUROfusion In Wendelstein 7-X (W7-X), a new ion cyclotron resonance heating (ICRH) antenna will be commissioned during the operational campaign OP2.1. The antenna will have to sustain power loads not only from thermal plasma and radiation but also fast ions. Predictive simulations of fast-ion power loads to the antenna components are therefore important to establish safe operational limits. In this work, the fast-ion power loads from the W7-X neutral beam injection (NBI) system to the ICRH antenna was simulated using the ASCOT suite of codes. Five reference magnetic configurations and five antenna positions were considered to provide an overview of power load behavior under various operating conditions. The NBI power load was found to have an exponential dependence on the antenna insertion depth. Differences between magnetic configurations were significant, with the antenna limiter power load varying between 380 W and 100 kW depending on the configuration. Qualitative differences in power load patterns between configurations were also observed, with the low mirror and low iota configurations exhibiting higher loads to the sensitive antenna straps. The local fast-ion power flux to the antenna limiter was also considered and found to exceed the 2.0 MW m−2 steady-state safety limit only in specific cases. The NBI system might thus pose a safety concern to the ICRH antenna during concurrent NBI-ICRH operation, but additional heat propagation simulations of antenna components are needed to establish more realistic operational time limits.
- Published
- 2023
6. Design of the torus interface for the neutral beam injectors of Wendelstein 7-X
- Author
-
Nocentini, R., Heinemann, B., Riedl, R., Rust, N., and Orozco, G.
- Published
- 2015
- Full Text
- View/download PDF
7. Cost of carnivore coexistence on communal and resettled land in Namibia
- Author
-
RUST, N. A. and MARKER, L. L.
- Published
- 2014
8. Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
- Author
-
W7-X Team, Beidler, C. D., Smith, H. M., Alonso, A., Andreeva, T., Baldzuhn, J., Beurskens, M. N. A., Borchardt, M., Bozhenkov, S. A., Brunner, K. J., Damm, H., Drevlak, M., Ford, O. P., Fuchert, G., Geiger, J., Helander, P., Hergenhahn, U., Hirsch, M., Höfel, U., Kazakov, Ye. O., Kleiber, R., Krychowiak, M., Kwak, S., Langenberg, A., Laqua, H. P., Neuner, U., Pablant, N. A., Pasch, E., Pavone, A., Pedersen, T. S., Rahbarnia, K., Schilling, J., Scott, E. R., Stange, T., Svensson, J., Thomsen, H., Turkin, Y., Warmer, F., Wolf, R. C., Zhang, D., Abramovic, I., Äkäslompolo, S., Alcusón, J., Aleynikov, P., Aleynikova, K., Ali, A., Anda, G., Ascasibar, E., Bähner, J. P., Baek, S. G., Balden, M., Banduch, M., Barbui, T., Behr, W., Benndorf, A., Biedermann, C., Biel, W., Blackwell, B., Blanco, E., Blatzheim, M., Ballinger, S., Bluhm, T., Böckenhoff, D., Böswirth, B., Böttger, L.-G., Borsuk, V., Boscary, J., Bosch, H.-S., Brakel, R., Brand, H., Brandt, C., Bräuer, T., Braune, H., Brezinsek, S., Brunner, K.-J., Burhenn, R., Bussiahn, R., Buttenschön, B., Bykov, V., Cai, J., Calvo, I., Cannas, B., Cappa, A., Carls, A., Carraro, L., Carvalho, B., Castejon, F., Charl, A., Chaudhary, N., Chauvin, D., Chernyshev, F., Cianciosa, M., Citarella, R., Claps, G., Coenen, J., Cole, M., Cole, M. J., Cordella, F., Cseh, G., Czarnecka, A., Czerski, K., Czerwinski, M., Czymek, G., Molin, A. da, Silva, A. da, Pena, A. de la, Degenkolbe, S., Dhard, C. P., Dibon, M., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Durodie, F., Edlund, E., Effenberg, F., Ehrke, G., Elgeti, S., Endler, M., Ennis, D., Esteban, H., Estrada, T., Fellinger, J., Feng, Y., Flom, E., Fernandes, H., Fietz, W. H., Figacz, W., Fontdecaba, J., Fornal, T., Frerichs, H., Freund, A., Funaba, T., Galkowski, A., Gantenbein, G., Gao, Y., García Regaña, J., Gates, D., Geiger, B., Giannella, V., Gogoleva, A., Goncalves, B., Goriaev, A., Gradic, D., Grahl, M., Green, J., Greuner, H., Grosman, A., Grote, H., Gruca, M., Grulke, O., Guerard, C., Hacker, P., Han, X., Harris, J. H., Hartmann, D., Hathiramani, D., Hein, B., Heinemann, B., Henneberg, S., Henkel, M., Hernandez Sanchez, J., Hidalgo, C., Hollfeld, K. P., Hölting, A., Höschen, D., Houry, M., Howard, J., Huang, X., Huang, Z., Hubeny, M., Huber, M., Hunger, H., Ida, K., Ilkei, T., Illy, S., Israeli, B., Jablonski, S., Jakubowski, M., Jelonnek, J., Jenzsch, H., Jesche, T., Jia, M., Junghanns, P., Kacmarczyk, J., Kallmeyer, J.-P., Kamionka, U., Kasahara, H., Kasparek, W., Kenmochi, N., Killer, C., Kirschner, A., Klinger, T., Knauer, J., Knaup, M., Knieps, A., Kobarg, T., Kocsis, G., Köchl, F., Kolesnichenko, Y., Könies, A., König, R., Kornejew, P., Koschinsky, J.-P., Köster, F., Krämer, M., Krampitz, R., Krämer-Flecken, A., Krawczyk, N., Kremeyer, T., Krom, J., Ksiazek, I., Kubkowska, M., Kühner, G., Kurki-Suonio, T., Kurz, P. A., Landreman, M., Lang, P., Lang, R., Langish, S., Laqua, H., Laube, R., Lazerson, S., Lechte, C., Lennartz, M., Leonhardt, W., Li, C., Li, Y., Liang, Y., Linsmeier, C., Liu, S., Lobsien, J.-F., Loesser, D., Loizu Cisquella, J., Lore, J., Lorenz, A., Losert, M., Lücke, A., Lumsdaine, A., Lutsenko, V., Maaßberg, H., Marchuk, O., Matthew, J. H., Marsen, S., Marushchenko, M., Masuzaki, S., Maurer, D., Mayer, M., McCarthy, K., McNeely, P., Meier, A., Mellein, D., Mendelevitch, B., Mertens, P., Mikkelsen, D., Mishchenko, A., Missal, B., Mittelstaedt, J., Mizuuchi, T., Mollen, A., Moncada, V., Mönnich, T., Morisaki, T., Moseev, D., Murakami, S., Náfrádi, G., Nagel, M., Naujoks, D., Neilson, H., Neu, R., Neubauer, O., Ngo, T., Nicolai, D., Nielsen, S. K., Niemann, H., Nishizawa, T., Nocentini, R., Nührenberg, C., Nührenberg, J., Obermayer, S., Offermanns, G., Ogawa, K., Ölmanns, J., Ongena, J., Oosterbeek, J. W., Orozco, G., Otte, M., Pacios Rodriguez, L., Panadero, N., Panadero Alvarez, N., Papenfuß, D., Paqay, S., Pawelec, E., Pelka, G., Perseo, V., Peterson, B., Pilopp, D., Pingel, S., Pisano, F., Plaum, B., Plunk, G., Pölöskei, P., Porkolab, M., Proll, J., Puiatti, M.-E., Puig Sitjes, A., Purps, F., Rack, M., Récsei, S., Reiman, A., Reimold, F., Reiter, D., Remppel, F., Renard, S., Riedl, R., Riemann, J., Risse, K., Rohde, V., Röhlinger, H., Romé, M., Rondeshagen, D., Rong, P., Roth, B., Rudischhauser, L., Rummel, K., Rummel, T., Runov, A., Rust, N., Ryc, L., Ryosuke, S., Sakamoto, R., Salewski, M., Samartsev, A., Sanchez, M., Sano, F., Satake, S., Schacht, J., Satheeswaran, G., Schauer, F., Scherer, T., Schlaich, A., Schlisio, G., Schluck, F., Schlüter, K.-H., Schmitt, J., Schmitz, H., Schmitz, O., Schmuck, S., Schneider, M., Schneider, W., Scholz, P., Schrittwieser, R., Schröder, M., Schröder, T., Schroeder, R., Schumacher, H., Schweer, B., Sereda, S., Shanahan, B., Sibilia, M., Sinha, P., Sipliä, S., Slaby, C., Sleczka, M., Spiess, W., Spong, D. A., Spring, A., Stadler, R., Stejner, M., Stephey, L., Stridde, U., Suzuki, C., Szabó, V., Szabolics, T., Szepesi, T., Szökefalvi-Nagy, Z., Tamura, N., Tancetti, A., Terry, J., Thomas, J., Thumm, M., Travere, J. M., Traverso, P., Tretter, J., Trimino Mora, H., Tsuchiya, H., Tsujimura, T., Tulipán, S., Unterberg, B., Vakulchyk, I., Valet, S., Vanó, L., Eeten, P. van, Milligen, B. van, Vuuren, A. J. van, Vela, L., Velasco, J.-L., Vergote, M., Vervier, M., Vianello, N., Viebke, H., Vilbrandt, R., Stechow, A. von, Vorköper, A., Wadle, S., Wagner, F., Wang, E., Wang, N., Wang, Z., Wauters, T., Wegener, L., Weggen, J., Wegner, T., Wei, Y., Weir, G., Wendorf, J., Wenzel, U., Werner, A., White, A., Wiegel, B., Wilde, F., Windisch, T., Winkler, M., Winter, A., Winters, V., Wolf, S., Wright, A., Wurden, G., Xanthopoulos, P., Yamada, H., Yamada, I., Yasuhara, R., Yokoyama, M., Zanini, M., Zarnstorff, M., Zeitler, A., Zhang, H., Zhu, J., Zilker, M., Zocco, A., Zoletnik, S., Zuin, M., W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, Applied Physics and Science Education, Science and Technology of Nuclear Fusion, Turbulence in Fusion Plasmas, and European Commission
- Subjects
Magnetically Confined Plasmas ,Tokamak ,Design ,Helias ,Nuclear engineering ,Magnetically confined plasmas ,01 natural sciences ,7. Clean energy ,Article ,Plasma physics ,010305 fluids & plasmas ,law.invention ,law ,Physics::Plasma Physics ,0103 physical sciences ,Nuclear fusion ,010306 general physics ,Engineering & allied operations ,Stellarator ,Physics ,Plasma fusion ,Multidisciplinary ,Toroid ,biology ,Plasma Physics ,Física ,Magnetic confinement fusion ,Plasma ,biology.organism_classification ,Energía Nuclear ,ddc:620 ,Wendelstein 7-X - Abstract
Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator’s non-turbulent ‘neoclassical’ energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas3,4. The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible1,5. Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization., Previously documented record values of the fusion triple product in the stellarator Wendelstein 7-X are shown to be evidence for reduced neoclassical energy transport in this optimized device.
- Published
- 2021
9. Placement of a Fast Ion Loss Detector Array in Wendelstein 7-X
- Author
-
Kulla, D., Lazerson, S., Günter, S., Hirsch, M., Hartmann, D., McNeely, P., Rust, N., Wolf, R., and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2021
10. Publisher Correction: Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
- Author
-
Beidler, C. D., Smith, H. M., Alonso, A., Andreeva, T., Baldzuhn, J., Beurskens, M. N. A., Borchardt, M., Bozhenkov, S. A., Brunner, K. J., Damm, H., Drevlak, M., Ford, O. P., Fuchert, G., Geiger, J., Helander, P., Hergenhahn, U., Hirsch, M., H��fel, U., Kazakov, Ye. O., Kleiber, R., Krychowiak, M., Kwak, S., Langenberg, A., Laqua, H. P., Neuner, U., Pablant, N. A., Pasch, E., Pavone, A., Pedersen, T. S., Rahbarnia, K., Schilling, J., Scott, E. R., Stange, T., Svensson, J., Thomsen, H., Turkin, Y., Warmer, F., Wolf, R. C., Zhang, D., Abramovic, I., ��k��slompolo, S., Alcus��n, J., Aleynikov, P., Aleynikova, K., Ali, A., Anda, G., Ascasibar, E., B��hner, J. P., Baek, S. G., Balden, M., Banduch, M., Barbui, T., Behr, W., Benndorf, A., Biedermann, C., Biel, W., Blackwell, B., Blanco, E., Blatzheim, M., Ballinger, S., Bluhm, T., B��ckenhoff, D., B��swirth, B., B��ttger, L.-G., Borsuk, V., Boscary, J., Bosch, H.-S., Brakel, R., Brand, H., Brandt, C., Br��uer, T., Braune, H., Brezinsek, S., Brunner, K.-J., Burhenn, R., Bussiahn, R., Buttensch��n, B., Bykov, V., Cai, J., Calvo, I., Cannas, B., Cappa, A., Carls, A., Carraro, L., Carvalho, B., Castejon, F., Charl, A., Chaudhary, N., Chauvin, D., Chernyshev, F., Cianciosa, M., Citarella, R., Claps, G., Coenen, J., Cole, M., Cole, M. J., Cordella, F., Cseh, G., Czarnecka, A., Czerski, K., Czerwinski, M., Czymek, G., Da Molin, A., Da Silva, A., De La Pena, A., Degenkolbe, S., Dhard, C. P., Dibon, M., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Durodie, F., Edlund, E., Effenberg, F., Ehrke, G., Elgeti, S., Endler, M., Ennis, D., Esteban, H., Estrada, T., Fellinger, J., Feng, Y., Flom, E., Fernandes, H., Fietz, W. H., Figacz, W., Fontdecaba, J., Fornal, T., Frerichs, H., Freund, A., Funaba, T., Galkowski, A., Gantenbein, G., Gao, Y., Garc��a Rega��a, J., Gates, D., Geiger, B., Giannella, V., Gogoleva, A., Goncalves, B., Goriaev, A., Gradic, D., Grahl, M., Green, J., Greuner, H., Grosman, A., Grote, H., Gruca, M., Grulke, O., Guerard, C., Hacker, P., Han, X., Harris, J. H., Hartmann, D., Hathiramani, D., Hein, B., Heinemann, B., Henneberg, S., Henkel, M., Hernandez Sanchez, J., Hidalgo, C., Hollfeld, K. P., H��lting, A., H��schen, D., Houry, M., Howard, J., Huang, X., Huang, Z., Hubeny, M., Huber, M., Hunger, H., Ida, K., Ilkei, T., Illy, S., Israeli, B., Jablonski, S., Jakubowski, M., Jelonnek, J., Jenzsch, H., Jesche, T., Jia, M., Junghanns, P., Kacmarczyk, J., Kallmeyer, J.-P., Kamionka, U., Kasahara, H., Kasparek, W., Kenmochi, N., Killer, C., Kirschner, A., Klinger, T., Knauer, J., Knaup, M., Knieps, A., Kobarg, T., Kocsis, G., K��chl, F., Kolesnichenko, Y., K��nies, A., K��nig, R., Kornejew, P., Koschinsky, J.-P., K��ster, F., Kr��mer, M., Krampitz, R., Kr��mer-Flecken, A., Krawczyk, N., Kremeyer, T., Krom, J., Ksiazek, I., Kubkowska, M., K��hner, G., Kurki-Suonio, T., Kurz, P. A., Landreman, M., Lang, P., Lang, R., Langish, S., Laqua, H., Laube, R., Lazerson, S., Lechte, C., Lennartz, M., Leonhardt, W., Li, C., Li, Y., Liang, Y., Linsmeier, C., Liu, S., Lobsien, J.-F., Loesser, D., Loizu Cisquella, J., Lore, J., Lorenz, A., Losert, M., L��cke, A., Lumsdaine, A., Lutsenko, V., Maa��berg, H., Marchuk, O., Matthew, J. H., Marsen, S., Marushchenko, M., Masuzaki, S., Maurer, D., Mayer, M., McCarthy, K., McNeely, P., Meier, A., Mellein, D., Mendelevitch, B., Mertens, P., Mikkelsen, D., Mishchenko, A., Missal, B., Mittelstaedt, J., Mizuuchi, T., Mollen, A., Moncada, V., M��nnich, T., Morisaki, T., Moseev, D., Murakami, S., N��fr��di, G., Nagel, M., Naujoks, D., Neilson, H., Neu, R., Neubauer, O., Ngo, T., Nicolai, D., Nielsen, S. K., Niemann, H., Nishizawa, T., Nocentini, R., N��hrenberg, C., N��hrenberg, J., Obermayer, S., Offermanns, G., Ogawa, K., ��lmanns, J., Ongena, J., Oosterbeek, J. W., Orozco, G., Otte, M., Pacios Rodriguez, L., Panadero, N., Panadero Alvarez, N., Papenfu��, D., Paqay, S., Pawelec, E., Pelka, G., Perseo, V., Peterson, B., Pilopp, D., Pingel, S., Pisano, F., Plaum, B., Plunk, G., P��l��skei, P., Porkolab, M., Proll, J., Puiatti, M.-E., Puig Sitjes, A., Purps, F., Rack, M., R��csei, S., Reiman, A., Reimold, F., Reiter, D., Remppel, F., Renard, S., Riedl, R., Riemann, J., Risse, K., Rohde, V., R��hlinger, H., Rom��, M., Rondeshagen, D., Rong, P., Roth, B., Rudischhauser, L., Rummel, K., Rummel, T., Runov, A., Rust, N., Ryc, L., Ryosuke, S., Sakamoto, R., Salewski, M., Samartsev, A., S��nchez, E., Sano, F., Satake, S., Schacht, J., Satheeswaran, G., Schauer, F., Scherer, T., Schlaich, A., Schlisio, G., Schluck, F., Schl��ter, K.-H., Schmitt, J., Schmitz, H., Schmitz, O., Schmuck, S., Schneider, M., Schneider, W., Scholz, P., Schrittwieser, R., Schr��der, M., Schr��der, T., Schroeder, R., Schumacher, H., Schweer, B., Sereda, S., Shanahan, B., Sibilia, M., Sinha, P., Sipli��, S., Slaby, C., Sleczka, M., Spiess, W., Spong, D. A., Spring, A., Stadler, R., Stejner, M., Stephey, L., Stridde, U., Suzuki, C., Szab��, V., Szabolics, T., Szepesi, T., Sz��kefalvi-Nagy, Z., Tamura, N., Tancetti, A., Terry, J., Thomas, J., Thumm, M., Travere, J. M., Traverso, P., Tretter, J., Trimino Mora, H., Tsuchiya, H., Tsujimura, T., Tulip��n, S., Unterberg, B., Vakulchyk, I., Valet, S., Van��, L., Van Eeten, P., Van Milligen, B., Van Vuuren, A. J., Vela, L., Velasco, J.-L., Vergote, M., Vervier, M., Vianello, N., Viebke, H., Vilbrandt, R., Von Stechow, A., Vork��per, A., Wadle, S., Wagner, F., Wang, E., Wang, N., Wang, Z., Wauters, T., Wegener, L., Weggen, J., Wegner, T., Wei, Y., Weir, G., Wendorf, J., Wenzel, U., Werner, A., White, A., Wiegel, B., Wilde, F., Windisch, T., Winkler, M., Winter, A., Winters, V., Wolf, S., Wright, A., Wurden, G., Xanthopoulos, P., Yamada, H., Yamada, I., Yasuhara, R., Yokoyama, M., Zanini, M., Zarnstorff, M., Zeitler, A., Zhang, H., Zhu, J., Zilker, M., Zocco, A., Zoletnik, S., and Zuin, M.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2021
11. Charge exchange recombination spectroscopy at Wendelstein 7-X
- Author
-
W7-X Team, Ford, O. P., Vanó, L., Alonso, J. A., Baldzuhn, J., Beurskens, M. N. A., Biedermann, C., Bozhenkov, S. A., Fuchert, G., Geiger, B., Hartmann, D., Jaspers, R. J. E., Kappatou, A., Langenberg, A., Lazerson, S. A., McDermott, R. M., McNeely, P., Neelis, T. W. C., Pablant, N. A., Pasch, E., Rust, N., Schroeder, R., Scott, E. R., Smith, H. M., Wegner, Th., Kunkel, F., Wolf, R. C., Gantenbein, Gerd, Huber, Martina, Illy, Stefan, Jelonnek, John, Kobarg, Thorsten, Lang, Rouven, Leonhardt, Wolfgang, Mellein, Daniel, Papenfuß, Daniel, Scherer, Theo, Thumm, Manfred, Wadle, Simone, Weggen, Jörg, Applied Physics and Science Education, Science and Technology of Nuclear Fusion, Sensorics for fusion reactors, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
010302 applied physics ,Technology ,Materials science ,Plasma parameters ,Plasma ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,law.invention ,law ,Electric field ,0103 physical sciences ,Physics::Accelerator Physics ,Emission spectrum ,Wendelstein 7-X ,Spectroscopy ,ddc:600 ,Instrumentation ,Stellarator ,Beam (structure) - Abstract
The Charge Exchange Recombination Spectroscopy (CXRS) diagnostic has become a routine diagnostic on almost all major high temperature fusion experimental devices. For the optimized stellarator Wendelstein 7-X (W7-X), a highly flexible and extensive CXRS diagnostic has been built to provide high-resolution local measurements of several important plasma parameters using the recently commissioned neutral beam heating. This paper outlines the design specifics of the W7-X CXRS system and gives examples of the initial results obtained, including typical ion temperature profiles for several common heating scenarios, toroidal flow and radial electric field derived from velocity measurements, beam attenuation via beam emission spectra, and normalized impurity density profiles under some typical plasma conditions.
- Published
- 2020
12. Investigation of mode activity in NBI-heated experiments of Wendelstein 7-X
- Author
-
W7-X Team, Slaby, C., Äkäslompolo, S., Borchardt, M., Geiger, J., Kleiber, R., Könies, A., Bozhenkov, S., Brandt, C., Dinklage, A., Dreval, M., Ford, O., Fuchert, G., Hartmann, D., Hirsch, M., Höfel, U., Huang, Z., McNeely, P., Pablant, N., Rahbarnia, K., Rust, N., Schilling, J., Stechow, A. von, Thomsen, H., Gantenbein, Gerd, Huber, Martina, Illy, Stefan, Jelonnek, John, Kobarg, Thorsten, Lang, Rouven, Leonhardt, Wolfgang, Mellein, Daniel, Papenfuß, Daniel, Scherer, Theo, Thumm, Manfred, Wadle, Simone, Weggen, Jörg, Department of Applied Physics, Aalto-yliopisto, Aalto University, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Nuclear and High Energy Physics ,Technology ,Continuous spectrum ,Plasma ,Condensed Matter Physics ,01 natural sciences ,Neutral beam injection ,010305 fluids & plasmas ,law.invention ,Computational physics ,Alfvén wave ,Distribution function ,Physics::Plasma Physics ,law ,Electric field ,0103 physical sciences ,Wendelstein 7-X ,010306 general physics ,ddc:600 ,Stellarator - Abstract
openaire: EC/H2020/633053/EU//EUROfusion The 2018 operation phase (OP 1.2b) of the stellarator Wendelstein 7-X (W7-X) included, for the first time, neutral beam injection (NBI) to heat the plasma. Since the injection geometry at W7-X is not parallel, this generates both passing and trapped fast particles. During longer phases of NBI injection, with the primary purpose to study the heating efficiency of this system, Alfven eigenmodes (AEs) were observed by a number of diagnostics, including the phase contrast imaging (PCI) system, the magnetic pick-up coils (Mirnov coils), and the soft x-ray multi-camera tomography system (XMCTS). Alfven eigenmodes are of great interest for future fusion reactors as it has been shown that the resonant interaction of fast ions with self-excited AEs can lead to enhanced transport of fast ions and potentially to energy losses. This is especially true for so-called gap-modes, Alfven eigenmodes with frequencies in gaps of the continuous spectrum, since they lack continuum damping. These modes are commonly known to be excited by fast ions, but other destabilizing mechanisms, e.g. the electron-pressure gradient are also possible. In this article we present a first analysis of the experimentally observed frequencies from the theoretical side. The calculation of shear Alfven wave continua for selected cases and the assignment of observed frequencies to the gaps of the continuous spectra are presented. Using the ideal-MHD code CKA (Konies A. 200710th IAEA TM on Energetic Particles in Magnetic Confinement System), we find gap modes that match the experimental measurements in terms of the observed frequencies. We emphasize the crucial roles played by the coupling of sound and Alfven waves as well as of the Doppler shift arising as a consequence of the radial electric field in W7-X. We employ the perturbative gyrokinetic code CKA-EUTERPE (Feh ' er 2013 Simulation of the interaction between Alfv ' en waves and fast particles), using a slowing-down distribution function for the fast ions as calculated by the Monte-Carlo particle following code ASCOT (Hirvijokiet al2014Comput. Phys. Commun.185 1310-21) to assess the fast-ion drive. We find that the fast-ion drive is insufficient to overcome the background-plasma damping. The fact that unstable modes were observed experimentally may point to problems with the modelling or indicate the existence of other destabilizing mechanisms, e.g. associated with the electron-pressure gradient (Windischet al2017Plasma Phys. Control. Fusion59 105002) that sensitively depend on the profiles of the background plasma.
- Published
- 2020
13. The effect of Pb and other elements found in recycled polypropylene on the manufacturing of lead-acid battery cases
- Author
-
Ferg, E.E. and Rust, N.
- Published
- 2007
- Full Text
- View/download PDF
14. Spectra of highly ionized xenon (6–30 nm) excited in W7-AS plasmas
- Author
-
Hacker, H.H., Burhenn, R., Kondo, K., Anton, M., Assmus, D., Baeumel, S., Beidler, C., Bindemann, T., Brakel, R., Cattanei, G., Dinklage, A., Dodhy, A., Dorst, D., Ehmler, H., Elsner, A., Endler, M., Engelhardt, K., Erckmann, V., Feng, Y., Fuchs, C., Gadelmeier, F., Geiger, J., Giannone, L., Grigull, P., Gruenwald, G., Grulke, O., Harmeyer, E., Hartfuss, H.J., Herrnegger, F., Hirsch, M., Hofner, J., Hollmann, F., Holzhauer, E., Igitkhanov, Y., Jaenicke, R., Karger, F., Kick, M., Kisslinger, J., Klose, S., Knauer, J., Kroiss, H., Kühner, G., Kus, A., Laqua, H., Liu, R., Maassberg, H., Marushchenko, N., McCormick, K., Michel, G., Noke, F., Ott, W., Otte, M., Pacco-Duechs, M.G., Penningsfeld, F.P., Polunovsky, E., Probst, F., Purps, F., Ruhs, N., Rust, N., Saffert, N.J., Salat, A., Sallander, J., Sardei, F., Schneider, F., Schubert, M., Sidorenko, I., Speth, E., Suess, R., Thomsen, H., Volpe, F., Wagner, F., Weller, A., Wendland, C., Werner, A., Wobig, H., Wuersching, E., and Zimmermann, D.
- Published
- 2001
- Full Text
- View/download PDF
15. A degradation study of isotactic virgin and recycled polypropylene used in lead acid battery casings
- Author
-
Rust, N., Ferg, E.E., and Masalova, I.
- Published
- 2006
- Full Text
- View/download PDF
16. Aneuploidy and columnar cuff surveillance after stapled ileal pouch-anal anastomosis in ulcerative colitis
- Author
-
Thompson-Fawcett, M. W., Rust, N. A., Warren, B. F., and Mortensen, N. J. M.
- Published
- 2000
- Full Text
- View/download PDF
17. Manufacturing of the Wendelstein 7-X divertor and wall protection
- Author
-
Benhard, S., Boscary, J., Greuner, H., Grigull, P., Kißlinger, J., Li, C., Mendelevitch, B., Pirsch, T., Rust, N., Schweizer, S., Vorköper, A., and Weißgerber, M.
- Published
- 2005
- Full Text
- View/download PDF
18. Design, performance and construction of a 2 MW ion beam test facility for plasma facing components
- Author
-
Greuner, H., Bolt, H., Böswirth, B., Franke, T., McNeely, P., Obermayer, S., Rust, N., and Süß, R.
- Published
- 2005
- Full Text
- View/download PDF
19. Porosity measurements of electrodes used in lead-acid batteries
- Author
-
Ferg, E.E., Loyson, P., and Rust, N.
- Published
- 2005
- Full Text
- View/download PDF
20. Validating fast-ion wall-load IR analysis-methods against W7-X NBI empty-torus experiment
- Author
-
Äkäslompolo, S., Drewelow, P., Gao, Y., Ali, A., Asunta, O., Bozhenkov, S., Fellinger, J., Ford, O. P., Harder, N. den, Hartmann, D., Jakubowski, M., McNeely, P., Niemann, H., Pisano, F., Rust, N., Sitjes, A. Puig, Sleczka, M., Spanier, A., Wolf, R. C., Team, the W7-X, Department of Applied Physics, Aalto-yliopisto, and Aalto University
- Subjects
Materials science ,Infrared ,FOS: Physical sciences ,01 natural sciences ,7. Clean energy ,030218 nuclear medicine & medical imaging ,law.invention ,Ion ,03 medical and health sciences ,0302 clinical medicine ,Optics ,Plasma diagnostics - interferometry, spectroscopy and imaging ,Plasma diagnostics - charged-particle spectroscopy ,law ,0103 physical sciences ,Calibration ,Instrumentation ,Mathematical Physics ,010308 nuclear & particles physics ,business.industry ,BALMER ALPHA-EMISSION ,Plasma ,Computational Physics (physics.comp-ph) ,BEAMS ,Charged particle ,Neutral beam injection ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,Simulation methods and programs ,business ,Physics - Computational Physics ,SYSTEM ,Beam (structure) ,Stellarator - Abstract
openaire: EC/H2020/633053/EU//EUROfusion The first neutral beam injection (NBI) experiments in Wendelstein 7-X (W7-X) stellarator were conducted in the summer of 2018. The NBI system is used to heat the magnetically confined plasma by neutralising an accelerated hydrogen ion beam and directing it into the plasma, where the resulting energetic ions release their energy to heat the plasma. The modelling of the NBI fast ion experiments has commenced, including estimation of the shine-through and the orbit-losses. The stellarator has a wide-angle infra red (IR) imaging system to monitor the machine plasma facing component surface temperatures. This work validates the NBI model "Beamlet Based NBI (BBNBI)" and the newly written synthetic IR camera model. The validation is accomplished by comparing the measured and the synthetic IR camera measurements of an experiment where the NBI was injected into the vacuum vessel without a plasma. A good qualitative and quantitative match was found. This agreement is further supported by spectroscopic and calibration measurements of the NBI and and IR camera systems.
- Published
- 2019
21. Validating the ASCOT modelling of NBI fast ions in Wendelstein 7-X stellarator
- Author
-
��k��slompolo, S., Drewelow, P., Gao, Y., Ali, A., Biedermann, C., Bozhenkov, S., Dhard, C. P., Endler, M., Fellinger, J., Ford, O. P., Geiger, B., Geiger, J., Harderd, N. den, Hartmann, D., Hathiramani, D., Isobe, M., Jakubowski, M., Kazakov, Y., Killer, C., Lazerson, S., Mayerd, M., McNeely, P., Naujoks, D., Neelis, T. W. C., Kontula, J., Kurki-Suonio, T., Niemann, H., Ogawa, K., Pisano, F., Poloskei, P. Zs., Sitjes, A. Puig, Rahbarnia, K., Rust, N., Schmitt, J. C., Sleczka, M., Vano, L., van Vuuren, A., Wurden, G., Wolf, R. C., and Team, the W7-X
- Subjects
Physics ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,law.invention ,Ion ,Nuclear physics ,Plasma Physics (physics.plasm-ph) ,Plasma diagnostics - charged-particle spectroscopy ,law ,Physics::Plasma Physics ,Plasma diagnostics - interferometry ,spectroscopy and imaging ,0103 physical sciences ,Simulation methods and programs ,Wendelstein 7-X ,010306 general physics ,Instrumentation ,Physics - Computational Physics ,Mathematical Physics ,Stellarator - Abstract
The first fast ion experiments in Wendelstein 7-X were performed in 2018. They are one of the first steps in demonstrating the optimised fast ion confinement of the stellarator. The fast ions were produced with a neutral beam injection (NBI) system and detected with infrared cameras (IR), a fast ion loss detector (FILD), fast ion charge exchange spectroscopy (FIDA), and post-mortem analysis of plasma facing components. The fast ion distribution function in the plasma and at the wall is being modelled with the ASCOT suite of codes. They calculate the ionisation of the injected neutrals and the consecutive slowing down process of the fast ions. The primary output of the code is the multidimensional fast ion distribution function within the plasma and the distribution of particle hit locations and velocities on the wall. Synthetic measurements based on ASCOT output are compared to experimental results to assess the validity of the modelling. This contribution presents an overview of the various fast ion measurements in 2018 and the current modelling status. The validation and data-analysis is on-going, but the wall load IR modelling already yield results that match with the experiments., Comment: Presented in the 3rd European Conference on Plasma Diagnostics; 6th to 9th of May 2019; Lisbon, Portugal
- Published
- 2019
22. Neutral-Beam-Injection on Wendelstein 7-X: Beam transmission, shine through and effect of plasma current
- Author
-
Rust, N., Ford, O. P., Dirk Hartmann, Heinemann, B., Mcneely, P., Schroeder, R., Spanier, A., Äkäslomplo, S., Wolf, R. C., and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2019
23. Validation of the BEAMS3D deposition model on Wendelstein 7-X
- Author
-
Lazerson, S. A., Neelis, T. N., Gao, Y., Ford, O., Äkäslompolo, S., Bozhenkov, S., Rust, N., Mcneely, P., Dirk Hartmann, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2019
24. Island divertor experiments on the Wendelstein 7-AS stellarator
- Author
-
McCormick, K., Grigull, P., Burhenn, R., Brakel, R., Ehmler, H., Feng, Y., Fischer, R., Gadelmeier, F., Giannone, L., Hildebrandt, D., Hirsch, M., Holzhauer, E., Jaenicke, R., Kisslinger, J., Klinger, T., Klose, S., Knauer, J.P., König, R., Kühner, G., Laqua, H.P., Naujoks, D., Niedermeyer, H., Pasch, E., Ramasubramanian, N., Rust, N., Sardei, F., Wagner, F., Weller, A., Wenzel, U., and Werner, A.
- Published
- 2003
- Full Text
- View/download PDF
25. Magnetic configuration effects on the Wendelstein 7-X stellarator
- Author
-
Dinklage A., Beidler C.D., Helander P., Fuchert G., Maassberg H., Rahbarnia K., Sunn Pedersen T., Turkin Y., Wolf R.C., Alonso A., Andreeva T., Blackwell B., Bozhenkov S., Buttenschon B., Czarnecka A., Effenberg F., Feng Y., Geiger J., Hirsch M., Hofel U., Jakubowski M., Klinger T., Knauer J., Kocsis G., Kramer-Flecken A., Kubkowska M., Langenberg A., Laqua H.P., Marushchenko N., Mollen A., Neuner U., Niemann H., Pasch E., Pablant N., Rudischhauser L., Smith H.M., Schmitz O., Stange T., Szepesi T., Weir G., Windisch T., Wurden G.A., Zhang D., Abramovic I., Akaslompolo S., Ali A., Belloso J.A., Aleynikov P., Aleynikova K., Alzbutas R., Anda G., Ascasibar E., Assmann J., Baek S.-G., Baldzuhn J., Banduch M., Barbui T., Barlak M., Baumann K., Behr W., Beidler C., Benndorf A., Bertuch O., Beurskens M., Biedermann C., Biel W., Birus D., Blanco E., Blatzheim M., Bluhm T., Bockenhoff D., Bolgert P., Borchardt M., Borsuk V., Boscary J., Bosch H.-S., Bottger L.-G., Brakel R., Brand H., Brandt C., Brauer T., Braune H., Brezinsek S., Brunner K.-J., Brunner B., Burhenn R., Bussiahn R., Bykov V., Cai Y., Calvo I., Cannas B., Cappa A., Card A., Carls A., Carraro L., Carvalho B., Castejon F., Charl A., Chernyshev F., Cianciosa M., Citarella R., Ciupinski L., Claps G., Cole M.J., Cordella F., Cseh G., Czermak A., Czerski K., Czerwinski M., Czymek G., da Molin A., da Silva A., Dammertz G., de la Pena A., Degenkolbe S., Denner P., Dittmar T., Dhard C.P., Dostal M., Drevlak M., Drewelow P., Drews P., Dudek A., Dundulis G., Durodie F., van Eeten P., Ehrke G., Endler M., Ennis D., Erckmann E., Esteban H., Estrada T., Fahrenkamp N., Feist J.-H., Fellinger J., Fernandes H., Fietz W.H., Figacz W., Fontdecaba J., Ford O., Fornal T., Frerichs H., Freund A., Fuhrer M., Funaba T., Galkowski A., Gantenbein G., Gao Y., Regana J.G., Garcia-Munoz M., Gates D., Gawlik G., Geiger B., Giannella V., Gierse N., Gogoleva A., Goncalves B., Goriaev A., Gradic D., Grahl M., Green J., Grosman A., Grote H., Gruca M., Grulke O., Guerard C., Hacker P., Haiduk L., Hammond K., Han X., Harberts F., Harris J.H., Hartfuss H.-J., Hartmann D., Hathiramani D., Hein B., Heinemann B., Heitzenroeder P., Henneberg S., Hennig C., Sanchez J.H., Hidalgo C., Holbe H., Hollfeld K.P., Holting A., Hoschen D., Houry M., Howard J., Huang X., Huber M., Huber V., Hunger H., Ida K., Ilkei T., Illy S., Israeli B., Ivanov A., Jablonski S., Jagielski J., Jelonnek J., Jenzsch H., Junghans P., Kacmarczyk J., Kaliatka T., Kallmeyer J.-P., Kamionka U., Karalevicius R., Kasahara H., Kasparek W., Kazakov Y., Kenmochi N., Keunecke M., Khilchenko A., Killer C., Kinna D., Kleiber R., Knaup M., Knieps A., Kobarg T., Kochl F., Kolesnichenko Y., Konies A., Koppen M., Koshurinov J., Koslowski R., Konig R., Koster F., Kornejew P., Koziol R., Kramer M., Krampitz R., Kraszewsk P., Krawczyk N., Kremeyer T., Krings T., Krom J., Krychowiak M., Krzesinski G., Ksiazek I., Kuhner G., Kurki-Suonio T., Kwak S., Landreman M., Lang R., Langish S., Laqua H., Laube R., Lazerson S., Lechte C., Lennartz M., Leonhardt W., Lewerentz L., Liang Y., Linsmeier C., Liu S., Lobsien J.-F., Loesser D., Cisquella J.L., Lore J., Lorenz A., Losert M., Lubyako L., Lucke A., Lumsdaine A., Lutsenko V., Maisano-Brown J., Marchuk O., Mardenfeld M., Marek P., Marsen S., Marushchenko M., Masuzaki S., Maurer D., McCarthy K., McNeely P., Meier A., Mellein D., Mendelevitch B., Mertens P., Mikkelsen D., Mishchenko O., Missal B., Mittelstaedt J., Mizuuchi T., Moncada V., Monnich T., Morisaki T., Moseev D., Munk R., Murakami S., Musielok F., Nafradi G., Nagel M., Naujoks D., Neilson H., Neubauer O., Ngo T., Nocentini R., Nuhrenberg C., Nuhrenberg J., Obermayer S., Offermanns G., Ogawa K., Ongena J., Oosterbeek J.W., Orozco G., Otte M., Rodriguez L.P., Pan W., Panadero N., Alvarez N.P., Panin A., Papenfuss D., Paqay S., Pavone A., Pawelec E., Pelka G., Peng X., Perseo V., Peterson B., Pieper A., Pilopp D., Pingel S., Pisano F., Plaum B., Plunk G., Povilaitis M., Preinhaelter J., Proll J., Puiatti M.-E., Sitjes A.P., Purps F., Rack M., Recsei S., Reiman A., Reiter D., Remppel F., Renard S., Riedl R., Riemann J., Rimkevicius S., Risse K., Rodatos A., Rohlinger H., Rome M., Rong P., Roscher H.-J., Roth B., Rummel K., Rummel T., Runov A., Rust N., Ryc L., Ryosuke S., Sakamoto R., Samartsev A., Sanchez M., Sano F., Satake S., Satheeswaran G., Schacht J., Schauer F., Scherer T., Schlaich A., Schlisio G., Schluter K.-H., Schmitt J., Schmitz H., Schmuck S., Schneider M., Schneider W., Scholz M., Scholz P., Schrittwieser R., Schroder M., Schroder T., Schroeder R., Schumacher H., Schweer B., Shanahan B., Shikhovtsev I.V., Sibilia M., Sinha P., Siplia S., Skodzik J., Slaby C., Smith H., Spiess W., Spong D.A., Spring A., Stadler R., Standley B., Stephey L., Stoneking M., Stridde U., Sulek Z., Pedersen T.S., Suzuki Y., Svensson J., Szabo V., Szabolics T., Szokefalvi-Nagy Z., Tamura N., Terra A., Terry J., Thomas J., Thomsen H., Thumm M., von Thun C.P., Timmermann D., Titus P., Toi K., Travere J.M., Traverso P., Tretter J., Mora H.T., Tsuchiya H., Tsujimura T., Tulipan S., Turnyanskiy M., Unterberg B., Urban J., Urbonavicius E., Vakulchyk I., Valet S., van Milligen B., Vela L., Velasco J.-L., Vergote M., Vervier M., Vianello N., Viebke H., Vilbrandt R., Vorkorper A., Wadle S., Wang E., Wang N., Warmer F., Wauters T., Wegener L., Weggen J., Wegner T., Wei Y., Wendorf J., Wenzel U., Wiegel B., Wilde F., Winkler E., Winters V., Wolf R., Wolf S., Wolowski J., Wright A., Wurden G., Xanthopoulos P., Yamada H., Yamada I., Yasuhara R., Yokoyama M., Zajac J., Zarnstorff M., Zeitler A., Zhang H., Zhu J., Zilker M., Zimbal A., Zocco A., Zoletnik S., Zuin M., W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, Science and Technology of Nuclear Fusion, and Turbulence in Fusion Plasmas
- Subjects
Physics ,Tokamak ,Field (physics) ,General Physics and Astronomy ,Plasma ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Bootstrap current ,Computational physics ,Magnetic field ,law.invention ,Magnetic mirror ,Wendelstein 7-X stellarator ,Physics and Astronomy (all) ,law ,Physics::Plasma Physics ,0103 physical sciences ,Wendelstein 7-X plasmas ,Wendelstein 7-X ,010306 general physics ,Stellarator - Abstract
The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures. Results from the first experimental campaign of the Wendelstein 7-X stellarator demonstrate that its magnetic-field design grants good control of parasitic plasma currents, leading to long energy confinement times.
- Published
- 2018
26. CROSS-SPECIES REACTIVITY OF THE MYELOID PANEL OF ANTIBODIES: MC-5-13
- Author
-
Carter, A S, Cerundolo, L, Koo, D, Rust, N, Morris, P J, and Fuggle, S V
- Published
- 1996
27. CROSS-REACTIVITY OF THE ADHESION PANEL ANTIBODIES WITH CYNOMOLGOUS MONKEY AND PORCINE TISSUE: AS-5-02
- Author
-
Carter, A S, Cerundolo, L, Koo, D, Rust, N, Morris, P J, and Fuggle, S V
- Published
- 1996
28. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000
- Author
-
Pedersen T. S., Otte M., Lazerson S., Helander P., Bozhenkov S., Biedermann C., Klinger T., Wolf R. C., Bosch H. -S., Abramovic I., Akaslompolo S., Aleynikov P., Aleynikova K., Ali A., Alonso A., Anda G., Andreeva T., Ascasibar E., Baldzuhn J., Banduch M., Barbui T., Beidler C., Benndorf A., Beurskens M., Biel W., Birus D., Blackwell B., Blanco E., Blatzheim M., Bluhm T., Bockenhoff D., Bolgert P., Borchardt M., Bottger L. -G., Brakel R., Brandt C., Brauer T., Braune H., Burhenn R., Buttenschon B., Bykov V., Calvo I., Cappa A., Carls A., De Carvalho B. B., Castejon F., Cianciosa M., Cole M., Costea S., Cseh G., Czarnecka A., Dal Molin A., De La Cal E., De La Pena A., Degenkolbe S., Dhard C. P., Dinklage A., Dostal M., Drevlak M., Drewelow P., Drews P., Dudek A., Durodie F., Dzikowicka A., Von Eeten P., Effenberg F., Endler M., Erckmann V., Estrada T., Fahrenkamp N., Fellinger J., Feng Y., Figacz W., Ford O., Fornal T., Frerichs H., Fuchert G., Garcia-Munoz M., Geiger B., Geiger J., Gierse N., Gogoleva A., Goncalves B., Gradic D., Grahl M., Gross S., Grote H., Grulke O., Guerard C., Haas M., Harris J., Hartfuss H. -J., Hartmann D., Hathiramani D., Hein B., Heirnich S., Henneberg S., Hennig C., Hernandez J., Hidalgo C., Hidalgo U., Hirsch M., Hofel U., Holbe H., Holting A., Houry M., Huber V., Ionita C., Israeli B., Jablonski S., Jakubowski M., Van Vuuren A. J., Jenzsch H., Kaczmarczyk J., Kallmeyer J. -P., Kamionka U., Kasahara H., Kenmochi N., Kernbichler W., Killer C., Kinna D., Kleiber R., Knauer J., Kochl F., Kocsis G., Kolesnichenko Y., Konies A., Konig R., Kornejew P., Koster F., Kramer-Flecken A., Krampitz R., Krawzyk N., Kremeyer T., Krychowiak M., Ksiazek I., Kubkowska M., Kuhner G., Kurki-Suonio T., Kurz P., Kuttler K., Kwak S., Landreman M., Langenberg A., Lapayese F., Laqua H., Laqua H. -P., Laube R., Laux M., Lentz H., Lewerentz M., Liang Y., Liu S., Lobsien J. -F., Cisquella J. L., Lopez-Bruna D., Lore J., Lorenz A., Lui S., Lutsenko V., Maassberg H., Maisano-Brown J., Marchuk O., Marrelli L., Marsen S., Marushchenko N., Masuzaki S., McCarthy K., McNeely P., Medina F., Milojevic D., Mishchenko A., Missal B., Mittelstaedt J., Mollen A., Moncada V., Monnich T., Moseev D., Nagel M., Naujoks D., Neilson G. H., Neubauer O., Neuner U., Ngo T. -T., Niemann H., Nuhrenberg C., Nuhrenberg J., Ochando M., Ogawa K., Ongena J., Oosterbeek H., Pablant N., Pacella D., Pacios L., Panadero N., Pasch E., Pastor I., Pavone A., Pawelec E., Pedrosa A., Perseo V., Peterson B., Pilopp D., Pisano F., Piulatti M. E., Plunk G., Preynas M., Proll J., Sitjes A. P., Purps F., Rack M., Rahbarnia K., Riemann J., Risse K., Rong P., Rosenberger J., Rudischhauser L., Rummel K., Rummel T., Runov A., Rust N., Ryc L., Saitoh H., Satake S., Schacht J., Schmitz O., Schmuck S., Schneider B., Schneider M., Schneider W., Schrittwieser R., Schroder M., Schroder T., Schroder R., Schumacher H. W., Schweer B., Seki R., Sinha P., Sipilae S., Slaby C., Smith H., Sousa J., Spring A., Standley B., Stange T., Von Stechow A., Stephey L., Stoneking M., Stridde U., Suzuki Y., Svensson J., Szabolics T., Szepesi T., Thomsen H., Travere J. -M., Traverso P., Mora H. T., Tsuchiya H., Tsuijmura T., Turkin Y., Valet S., Van Milligen B., Vela L., Velasco J. -L., Vergote M., Vervier M., Viebke H., Vilbrandt R., Von Thun C. P., Wagner F., Wang E., Wang N., Warmer F., Wauters T., Wegener L., Wegner T., Weir G., Wendorf J., Wenzel U., Werner A., Wie Y., Wiegel B., Wilde F., Windisch T., Winkler M., Winters V., Wright A., Wurden G., Xanthopoulos P., Yamada I., Yasuhara R., Yokoyama M., Zhang D., Zilker M., Zimbal A., Zocco A., Zoletnik S., W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, Massachusetts Institute of Technology. Department of Physics, Maisano-Brown, Jeannette D., Science and Technology of Nuclear Fusion, Pedersen, T, Otte, M, Lazerson, S, Helander, P, Bozhenkov, S, Biedermann, C, Klinger, T, Wolf, R, Bosch, H, Abramovic, I, Akaslompolo, S, Aleynikov, P, Aleynikova, K, Ali, A, Alonso, A, Anda, G, Andreeva, T, Ascasibar, E, Baldzuhn, J, Banduch, M, Barbui, T, Beidler, C, Benndorf, A, Beurskens, M, Biel, W, Birus, D, Blackwell, B, Blanco, E, Blatzheim, M, Bluhm, T, Bockenhoff, D, Bolgert, P, Borchardt, M, Bottger, L, Brakel, R, Brandt, C, Brauer, T, Braune, H, Burhenn, R, Buttenschon, B, Bykov, V, Calvo, I, Cappa, A, Carls, A, De Carvalho, B, Castejon, F, Cianciosa, M, Cole, M, Costea, S, Cseh, G, Czarnecka, A, Dal Molin, A, De La Cal, E, De La Pena, A, Degenkolbe, S, Dhard, C, Dinklage, A, Dostal, M, Drevlak, M, Drewelow, P, Drews, P, Dudek, A, Durodie, F, Dzikowicka, A, Von Eeten, P, Effenberg, F, Endler, M, Erckmann, V, Estrada, T, Fahrenkamp, N, Fellinger, J, Feng, Y, Figacz, W, Ford, O, Fornal, T, Frerichs, H, Fuchert, G, Garcia-Munoz, M, Geiger, B, Geiger, J, Gierse, N, Gogoleva, A, Goncalves, B, Gradic, D, Grahl, M, Gross, S, Grote, H, Grulke, O, Guerard, C, Haas, M, Harris, J, Hartfuss, H, Hartmann, D, Hathiramani, D, Hein, B, Heirnich, S, Henneberg, S, Hennig, C, Hernandez, J, Hidalgo, C, Hidalgo, U, Hirsch, M, Hofel, U, Holbe, H, Holting, A, Houry, M, Huber, V, Ionita, C, Israeli, B, Jablonski, S, Jakubowski, M, Van Vuuren, A, Jenzsch, H, Kaczmarczyk, J, Kallmeyer, J, Kamionka, U, Kasahara, H, Kenmochi, N, Kernbichler, W, Killer, C, Kinna, D, Kleiber, R, Knauer, J, Kochl, F, Kocsis, G, Kolesnichenko, Y, Konies, A, Konig, R, Kornejew, P, Koster, F, Kramer-Flecken, A, Krampitz, R, Krawzyk, N, Kremeyer, T, Krychowiak, M, Ksiazek, I, Kubkowska, M, Kuhner, G, Kurki-Suonio, T, Kurz, P, Kuttler, K, Kwak, S, Landreman, M, Langenberg, A, Lapayese, F, Laqua, H, Laube, R, Laux, M, Lentz, H, Lewerentz, M, Liang, Y, Liu, S, Lobsien, J, Cisquella, J, Lopez-Bruna, D, Lore, J, Lorenz, A, Lui, S, Lutsenko, V, Maassberg, H, Maisano-Brown, J, Marchuk, O, Marrelli, L, Marsen, S, Marushchenko, N, Masuzaki, S, Mccarthy, K, Mcneely, P, Medina, F, Milojevic, D, Mishchenko, A, Missal, B, Mittelstaedt, J, Mollen, A, Moncada, V, Monnich, T, Moseev, D, Nagel, M, Naujoks, D, Neilson, G, Neubauer, O, Neuner, U, Ngo, T, Niemann, H, Nuhrenberg, C, Nuhrenberg, J, Ochando, M, Ogawa, K, Ongena, J, Oosterbeek, H, Pablant, N, Pacella, D, Pacios, L, Panadero, N, Pasch, E, Pastor, I, Pavone, A, Pawelec, E, Pedrosa, A, Perseo, V, Peterson, B, Pilopp, D, Pisano, F, Piulatti, M, Plunk, G, Preynas, M, Proll, J, Sitjes, A, Purps, F, Rack, M, Rahbarnia, K, Riemann, J, Risse, K, Rong, P, Rosenberger, J, Rudischhauser, L, Rummel, K, Rummel, T, Runov, A, Rust, N, Ryc, L, Saitoh, H, Satake, S, Schacht, J, Schmitz, O, Schmuck, S, Schneider, B, Schneider, M, Schneider, W, Schrittwieser, R, Schroder, M, Schroder, T, Schroder, R, Schumacher, H, Schweer, B, Seki, R, Sinha, P, Sipilae, S, Slaby, C, Smith, H, Sousa, J, Spring, A, Standley, B, Stange, T, Von Stechow, A, Stephey, L, Stoneking, M, Stridde, U, Suzuki, Y, Svensson, J, Szabolics, T, Szepesi, T, Thomsen, H, Travere, J, Traverso, P, Mora, H, Tsuchiya, H, Tsuijmura, T, Turkin, Y, Valet, S, Van Milligen, B, Vela, L, Velasco, J, Vergote, M, Vervier, M, Viebke, H, Vilbrandt, R, Von Thun, C, Wagner, F, Wang, E, Wang, N, Warmer, F, Wauters, T, Wegener, L, Wegner, T, Weir, G, Wendorf, J, Wenzel, U, Werner, A, Wie, Y, Wiegel, B, Wilde, F, Windisch, T, Winkler, M, Winters, V, Wright, A, Wurden, G, Xanthopoulos, P, Yamada, I, Yasuhara, R, Yokoyama, M, Zhang, D, Zilker, M, Zimbal, A, Zocco, A, Zoletnik, S, Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, Department of Applied Physics, Aalto-yliopisto, Aalto University, and Pacella, D.
- Subjects
Tokamak ,Plasma parameters ,Science ,General Physics and Astronomy ,Topology (electrical circuits) ,Topology ,7. Clean energy ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,010305 fluids & plasmas ,law.invention ,law ,0103 physical sciences ,010306 general physics ,Physics ,Fusion, Wendelstein7-X, Stellarator ,Multidisciplinary ,ta114 ,General Chemistry ,Plasma ,Fusion power ,Magnetic field ,Erratum ,Wendelstein 7-X ,Stellarator - Abstract
Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy., Early stellarator designs suffered from high particle losses, an issue that can be addressed by optimization of the coils. Here the authors measure the magnetic field lines in the Wendelstein 7-X stellarator, confirming that the complicated design of the superconducting coils has been realized successfully.
- Published
- 2016
29. Predictive modelling of NBI wall loads in W7-X scenarios exhibiting vanishing bootstrap current
- Author
-
Kontula, J., Äkäslompolo, S., Turkin, Y., Bozhenkov, S., Rust, N., Kurki-Suonio, T., and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2017
30. Investigation of mode activity in NBI-heated experiments of Wendelstein 7-X.
- Author
-
Slaby, C., Äkäslompolo, S., Borchardt, M., Geiger, J., Kleiber, R., Könies, A., Bozhenkov, S., Brandt, C., Dinklage, A., Dreval, M., Ford, O., Fuchert, G., Hartmann, D., Hirsch, M., Höfel, U., Huang, Z., McNeely, P., Pablant, N., Rahbarnia, K., and Rust, N.
- Subjects
PLASMA turbulence ,DOPPLER effect ,FAST ions ,MAGNETIC confinement ,PLASMA Alfven waves ,MAGNETIC particles - Abstract
The 2018 operation phase (OP 1.2b) of the stellarator Wendelstein 7-X (W7-X) included, for the first time, neutral beam injection (NBI) to heat the plasma. Since the injection geometry at W7-X is not parallel, this generates both passing and trapped fast particles. During longer phases of NBI injection, with the primary purpose to study the heating efficiency of this system, Alfvén eigenmodes (AEs) were observed by a number of diagnostics, including the phase contrast imaging (PCI) system, the magnetic pick-up coils (Mirnov coils), and the soft x-ray multi-camera tomography system (XMCTS). Alfvén eigenmodes are of great interest for future fusion reactors as it has been shown that the resonant interaction of fast ions with self-excited AEs can lead to enhanced transport of fast ions and potentially to energy losses. This is especially true for so-called gap-modes, Alfvén eigenmodes with frequencies in gaps of the continuous spectrum, since they lack continuum damping. These modes are commonly known to be excited by fast ions, but other destabilizing mechanisms, e.g. the electron-pressure gradient are also possible. In this article we present a first analysis of the experimentally observed frequencies from the theoretical side. The calculation of shear Alfvén wave continua for selected cases and the assignment of observed frequencies to the gaps of the continuous spectra are presented. Using the ideal-MHD code CKA (Könies A. 2007 10th IAEA TM on Energetic Particles in Magnetic Confinement System), we find gap modes that match the experimental measurements in terms of the observed frequencies. We emphasize the crucial roles played by the coupling of sound and Alfvén waves as well as of the Doppler shift arising as a consequence of the radial electric field in W7-X. We employ the perturbative gyrokinetic code CKA-EUTERPE (Feh´er 2013 Simulation of the interaction between Alfv´en waves and fast particles), using a slowing-down distribution function for the fast ions as calculated by the Monte-Carlo particle following code ASCOT (Hirvijoki et al 2014 Comput. Phys. Commun. 185 1310–21) to assess the fast-ion drive. We find that the fast-ion drive is insufficient to overcome the background-plasma damping. The fact that unstable modes were observed experimentally may point to problems with the modelling or indicate the existence of other destabilizing mechanisms, e.g. associated with the electron-pressure gradient (Windisch et al 2017 Plasma Phys. Control. Fusion 59 105002) that sensitively depend on the profiles of the background plasma. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
31. Charge exchange recombination spectroscopy at Wendelstein 7-X.
- Author
-
Ford, O. P., Vanó, L., Alonso, J. A., Baldzuhn, J., Beurskens, M. N. A., Biedermann, C., Bozhenkov, S. A., Fuchert, G., Geiger, B., Hartmann, D., Jaspers, R. J. E., Kappatou, A., Langenberg, A., Lazerson, S. A., McDermott, R. M., McNeely, P., Neelis, T. W. C., Pablant, N. A., Pasch, E., and Rust, N.
- Subjects
CHARGE exchange ,SPECTROMETRY ,RADIAL flow ,NEUTRAL beams ,VELOCITY measurements ,ION migration & velocity - Abstract
The Charge Exchange Recombination Spectroscopy (CXRS) diagnostic has become a routine diagnostic on almost all major high temperature fusion experimental devices. For the optimized stellarator Wendelstein 7-X (W7-X), a highly flexible and extensive CXRS diagnostic has been built to provide high-resolution local measurements of several important plasma parameters using the recently commissioned neutral beam heating. This paper outlines the design specifics of the W7-X CXRS system and gives examples of the initial results obtained, including typical ion temperature profiles for several common heating scenarios, toroidal flow and radial electric field derived from velocity measurements, beam attenuation via beam emission spectra, and normalized impurity density profiles under some typical plasma conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
32. Confinement Fee
- Author
-
Rust, N. E. and Leeming, D. J.
- Published
- 1974
33. Analysis of Lyn/CD22 double-deficient B cells in vivo demonstrates Lyn- and CD22-independent pathways affecting BCR regulation and B cell survival
- Author
-
Ferry, H, Crockford, TL, Cockford, TL, Silver, K, Rust, N, Goodnow, CC, and Cornall, RJ
- Subjects
Cell Survival ,Transgene ,Sialic Acid Binding Ig-like Lectin 2 ,Immunology ,Egg protein ,Receptors, Antigen, B-Cell ,Mice, Transgenic ,Biology ,environment and public health ,Mice ,immune system diseases ,LYN ,hemic and lymphatic diseases ,medicine ,Immune Tolerance ,Immunology and Allergy ,Animals ,Receptor ,B cell ,Cells, Cultured ,Mice, Knockout ,B-Lymphocytes ,CD22 ,breakpoint cluster region ,hemic and immune systems ,Cell Differentiation ,Mice, Inbred C57BL ,medicine.anatomical_structure ,src-Family Kinases ,Cancer research ,Phosphorylation ,biological phenomena, cell phenomena, and immunity - Abstract
B cell fate is determined by the strength of signals from the antigen receptor and from co-receptors that adjust the activation threshold and tune the B cell to its environment. These co-receptors have been broadly classified into inhibitory and enhancing groups, yet some, such as CD22, may have dual effects. CD22 recruits a variety of signal enhancers at the same time as Lyn-dependent phosphorylation leads to the binding of the inhibitory phosphatase SHP-1. To assess the relative importance of Lyn- and CD22-dependent and -independent pathways, we generated Lyn and CD22 single-deficient mice and Lyn/CD22 double-deficient mice expressing the MD4 immunoglobulin transgene against hen egg lysozyme (IgHEL). This genetic approach has enabled us to compare the contributions of Lyn and CD22 to B cell development in vivo, independent of BCR specificity and in the presence and absence of self-antigen. Our results show that although the effects of Lyn are dominant in negative regulation of B cell hyperactivity, Lyn and CD22 have independent and additive effects on B cell survival. These findings emphasize the subtle nature of regulation at the BCR and the usefulness of genetic complementation to dissect common and parallel pathways.
- Published
- 2016
34. Identification of a G-Protein Subunit-α11 Gain-of-Function Mutation, Val340Met, in a Family with Autosomal Dominant Hypocalcemia Type 2 (ADH2)
- Author
-
Piret, SE, Gorvin, CM, Pagnamenta, AT, Howles, SA, Cranston, T, Rust, N, Nesbit, MA, Glaser, B, Taylor, JC, Buchs, AE, Hannan, F, and Thakker, RV
- Abstract
Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia, inappropriately low serum parathyroid hormone concentrations and hypercalciuria. ADH is genetically heterogeneous with ADH type 1 (ADH1), the predominant form, being caused by germline gain-of-function mutations of the G-protein coupled calcium-sensing receptor (CaSR), and ADH2 caused by germline gain-of-function mutations of G-protein subunit α-11 (Gα11 ). To date Gα11 mutations causing ADH2 have been reported in only five probands. We investigated a multi-generational non-consanguineous family, from Iran, with ADH and keratoconus which are not known to be associated, for causative mutations by whole-exome sequencing in two individuals with hypoparathyroidism, of whom one also had keratoconus, followed by cosegregation analysis of variants. This identified a novel heterozygous germline Val340Met Gα11 mutation in both individuals, and this was also present in the other 2 relatives with hypocalcemia that were tested. Three-dimensional modeling revealed the Val340Met mutation to likely alter the conformation of the C-terminal α5 helix, which may affect G-protein coupled receptor binding and G-protein activation. In vitro functional expression of wild-type (Val340) and mutant (Met340) Gα11 proteins in HEK293 cells stably expressing the CaSR, demonstrated that the intracellular calcium responses following stimulation with extracellular calcium, of the mutant Met340 Gα11 led to a leftward shift of the concentration-response curve with a significantly (p
- Published
- 2016
35. Nuclear structure study of51V
- Author
-
van der Merwe, J. C., Naudé, W. J., Saayman, R., Koen, J. W., and Rust, N. J. A.
- Published
- 1980
- Full Text
- View/download PDF
36. The structure and properties of45Sc at low excitation energies
- Author
-
Buitendag, J. J., Naudé, W. J., Saayman, R., Rust, N. J. A., and Koen, J. W.
- Published
- 1980
- Full Text
- View/download PDF
37. Nuclear structure study of37Cl
- Author
-
Lawrie, J. J., Naudé, W. J., Stander, J. A., Koen, J. W., and Rust, N. J. A.
- Published
- 1986
- Full Text
- View/download PDF
38. Properties of low-lying levels of59Co
- Author
-
Haupt, P., Koen, J. W., Naudé, W. J., and Rust, N. J. A.
- Published
- 1980
- Full Text
- View/download PDF
39. Properties of low-lying levels of39K
- Author
-
Stander, J. A., Naudé, W. J., Saayman, R., and Rust, N. J. A.
- Published
- 1986
- Full Text
- View/download PDF
40. Mean lifetime of the 720 keV level of45Sc
- Author
-
Rust, N. J. A., Koen, J. W., and Mouton, W. L.
- Published
- 1971
- Full Text
- View/download PDF
41. Isolating coccoliths from sediment for geochemical analysis
- Author
-
Halloran, P, Rust, N, and Rickaby, R
- Subjects
trace element ,coccolithophore ,clay ,sorting ,coccolith ,geochemistry - Abstract
Trace element analysis of open-marine sedimentary carbonates provides a wealth of paleoclimate data. At present, the majority of this data is obtained from foraminifera tests. Complications regarding the variability of conditions experienced by foraminifera throughout test formation and the influence of diagenetic processes on sample chemistry limit the value of foraminifera samples in certain situations. Coccoliths, the calcium carbonate plates produced by coccolithophores, represent a second major pelagic open-marine carbonate source with the potential to provide a wide range of valuable trace element proxy data but which have, until now, been unavailable for analysis of many trace elements because of clay contamination. Here we describe a novel technique, which utilizes fast sorting flow cytometry, to enable the production of clay-free sedimentary coccolith samples. © 2009 by the American Geophysical Union.
- Published
- 2009
42. Erratum: Analysis of Lyn/CD22 double-deficient B cells in vivo demonstrates Lyn- and CD22- independent pathways affecting BCR regulation and B cell survival (European Journal of Immunology (2005) vol. 35 (12) (3714) 10.1002/eji.200535247)
- Author
-
Ferry, H, Crockford, T, Silver, K, Rust, N, Goodnow, C, and Cornall, R
- Published
- 2005
43. Improved Performance of the W7-AS Stellarator with the New Island Divertor
- Author
-
Brakel, R., Grigull, P., McCormick, K., Burhenn, R., Feng, Y., Sardei, F., Baldzuhn, J., Ehmler, H., Gadelmeier, F., Giannone, L., Hildebrandt, D., Ida, K., Jaenicke, R., Kisslinger, J., Klinger, T., Knauer, J., König, R., Kühner, G., Laqua, H., Naujoks, D., Niedermeyer, H., Pasch, E., Ramasubramanian, N., Rust, N., Wagner, F., Weller, A., Wenzel, U., Werner, A., and W7-AS Team
- Subjects
Physics::Plasma Physics - Abstract
The island divertor concept has successfully been realized at W7-AS. The divertor gives access to a new NBI-heated high density regime with densities up to 4×10²⁰m-3 and energy confinement well above customary scalings. This regime appears promising with respect to the requirements of both confinement and exhaust. Many features are reminiscent of a quiescent H-mode, but plasma particle transport behaves differently. Beyond a threshold density energy confinement approximately doubles whereas particle confinement dramatically decreases. The density profile flattens and the inward impurity pinch is reduced. This eases density control, prevents impurity accumulation, and allows for quasi-stationary conditions with radiation profiles peaked at the edge. At the highest densities partial detachment occurs with a radiated power fraction up to 90% at a tolerable expense of plasma energy. The sub-divertor pressure is sufficient for pumping. Major experimental results, such as the lack of a high recycling phase preceding detachment, are also predicted by the EMC3/EIRENE code.
- Published
- 2003
44. Measurement of Neutral-Beam Deposition Profiles at W7-AS and LHD Stellarator
- Author
-
Rust, N., Hartmann, D., Osakabe, M., Ott, W., and Speth, E.
- Published
- 2003
45. Major results from Wendelstein 7-AS stellarator
- Author
-
Wagner, F., Burhenn, R., Gadelmeier, F., Geiger, J., Hirsch, M., Laqua, H., Weller, A., Werner, A., Bäumel, S., Baldzuhn, J., Brakel, R., Dinklage, A., Grigull, P., Endler, M., Erckmann, V., Ehmler, H., Feng, Y., Fischer, R., Giannone, L., Hartfuss, H., Hildebrandt, D., Holzhauer, E., Igitkhanov, Y., Jaenicke, R., Kick, M., Kislyakov, A., Kreter, A., Kisslinger, J., Klinger, T., Klose, S., Knauer, J., König, R., Kühner, G., Maassberg, H., McCormick, K., Naujoks, D., Niedermeyer, H., Nührenberg, C., Pasch, E., Ramasubramanian, N., Rust, N., Sallander, E., Sardei, F., Wenzel, U., Wobig, H., Würsching, E., Zarnstorff, M., Zoletnik, S., and W7-AS Team
- Abstract
W7-AS operates with an island divertor, which utilises the natural edge islands of the low-shear stellarator configuration to divert the plasma. High densities (up to 4×1020m-3) and partly detached divertor conditions have been attained. The details of the divertor operation will be described along with the 3D-efforts to model the divertor observations. At a density beyond 1.5×1020m-3 another confinement bifurcation appears, which allows steady state operation at good energy and low impurity confinement. The transition is possible from a state of normal confinement or from ELMy or quiescent H-modes. Starting with normal confinement, bifurcation is initiated by a broadening of the density profile. This regime can easily be heated above cut-off by ECRH using electron-bernstein-wave mode conversion. The highest beta-values (>3%) are achieved at high density. The relevance of the W7-AS data for Wendelstein 7-X and the Helias-reactor will be discussed.
- Published
- 2003
46. Investigation of the beta-limit in the W7-AS stellarator
- Author
-
Weller, A., Geiger, J., Zarnstorff, M., Sallander, E., Klose, S., Werner, A., Baldzuhn, J., Brakel, R., Burhenn, R., Ehmler, H., Gadelmeier, F., Giannone, L., Hartmann, D., Jaenicke, R., Knauer, J., Laqua, H., Nührenberg, C., Pasch, E., Rust, N., Speth, E., Spong, D., Wagner, F., Wenzel, U., W7-AS Team, and NBI Group
- Subjects
Physics::Plasma Physics - Abstract
Investigations of the performance and stability of high-beta plasmas have been restarted in W7-AS utilizing higher heating powers and the new divertor system. The combination of beneficial effects resulted in a significant increase of the volume averaged β from 2 % up to 3.1 % and in MHD-quiescent, quasi-stationary discharges at low radiation levels. Experimental studies of equilibrium effects and of MHD mode activity have been performed with the X-ray tomography system. In addition results of computational MHD stability studies are presented, which show an increase of the stability with increasing β due to the pressure induced deepening of the magnetic well in combination with increasing magnetic shear, in qualitative agreement with the experimental data. The maximum achieved β is limited by the available heating power and not by stability effects. The equilibrium β-limit is approached in the case of low-iota configurations. Particularly with regard to current carrying stellarators and comparisons with tokamaks the modification of the stability of high-beta plasmas by significant OH-currents has been investigated.
- Published
- 2003
47. Bolometer tomography and density limit of the high density H-mode in the W7-AS Stellarator
- Author
-
Giannone, L., McCormick, K., Baldzuhn, J., Brakel, R., Burhenn, R., Ehmler, H., Feng, Y., Grigull, P., Knauer, J., Pasch, E., Narayanan, R., Rust, N., and W7-AS Team
- Published
- 2002
48. Recent results from W7-AS with the new radial NBI injector
- Author
-
Rust, N., Baldzuhn, J., Kick, M., Werner, A., and Speth, E.
- Published
- 2002
49. Major results from Wendelstein 7-AS stellerator
- Author
-
Wagner, F., Burhenn, R., Brakel, R., Dinklage, A., Grigull, P., Endler, M., Erckmann, V., Ehmler, H., Feng, Y., Fischer, R., Gadelmeier, F., LaGiannone, L., Hartfuss, H. J., Hildebrandt, D., Holzhauer, E., Igitkhanov, Y., Jänicke, R., Kick, M., Kislyakov, A., Kreter, A., Kisslinger, J., Klinger, T., Geiger, J., Klose, S., Knauer, J. P., König, R., Kühner, G., Maassberg, H., McCormick, K., Naujoks, D., Niedermeyer, H., Nührenberg, C., Pasch, E., Hirsch, M., Ramasubramanian, N., Rust, N., Sallander, E., Sardei, F., Wenzel, U., Wobig, H., Würsching, E., Zarnstorff, M., Zoletnik, S., Laqua, H. P., Weller, A., Werner, A., Bäumel, S., and Baldzuhn, J.
- Published
- 2002
50. Determination of Neutral-Beam Deposition Profiles with Modulation Experiments in Combination with ECRH-Heating in W7-AS
- Author
-
Rust, N., Ott, W., Fuchs, C., Werner, A., and Speth, E.
- Published
- 2001
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.