169 results on '"Kührt, E."'
Search Results
2. Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu
- Author
-
Grott, M., Knollenberg, J., Hamm, M., Ogawa, K., Jaumann, R., Otto, K. A., Delbo, M., Michel, P., Biele, J., Neumann, W., Knapmeyer, M., Kührt, E., Senshu, H., Okada, T., Helbert, J., Maturilli, A., Müller, N., Hagermann, A., Sakatani, N., Tanaka, S., Arai, T., Mottola, S., Tachibana, S., Pelivan, I., Drube, L., Vincent, J.-B., Yano, H., Pilorget, C., Matz, K. D., Schmitz, N., Koncz, A., Schröder, S. E., Trauthan, F., Schlotterer, M., Krause, C., Ho, T.-M., and Moussi-Soffys, A.
- Published
- 2019
- Full Text
- View/download PDF
3. The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects
- Author
-
Tosi, F., Capaccioni, F., Capria, M. T., Mottola, S., Zinzi, A., Ciarniello, M., Filacchione, G., Hofstadter, M., Fonti, S., Formisano, M., Kappel, D., Kührt, E., Leyrat, C., Vincent, J.-B., Arnold, G., De Sanctis, M. C., Longobardo, A., Palomba, E., Raponi, A., Rousseau, B., Schmitt, B., Barucci, M. A., Bellucci, G., Benkhoff, J., Bockelée-Morvan, D., Cerroni, P., Combe, J.-Ph., Despan, D., Erard, S., Mancarella, F., McCord, T. B., Migliorini, A., Orofino, V., and Piccioni, G.
- Published
- 2019
- Full Text
- View/download PDF
4. Coma morphology of comet 67P controlled by insolation over irregular nucleus
- Author
-
Shi, X., Hu, X., Mottola, S., Sierks, H., Keller, H. U., Rose, M., Güttler, C., Fulle, M., Fornasier, S., Agarwal, J., Pajola, M., Tubiana, C., Bodewits, D., Barbieri, C., Lamy, P. L., Rodrigo, R., Koschny, D., Barucci, M. A., Bertaux, J.-L., Bertini, I., Boudreault, S., Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco, M., Deller, J., Groussin, O., Gutiérrez, P. J., Hviid, S. F., Ip, W.-H., Jorda, L., Knollenberg, J., Kovacs, G., Kramm, J.-R., Kührt, E., Küppers, M., Lara, L. M., Lazzarin, M., Lopez-Moreno, J. J., Marzari, F., Naletto, G., Oklay, N., Toth, I., and Vincent, J.-B.
- Published
- 2018
- Full Text
- View/download PDF
5. Towards New Comet Missions
- Author
-
Thomas, N., Ulamec, S., Kührt, E., Ciarletti, V., Gundlach, B., Yoldi, Z., Schwehm, G., Snodgrass, C., and Green, S. F.
- Published
- 2019
- Full Text
- View/download PDF
6. Correction to: The Thermal, Mechanical, Structural, and Dielectric Properties of Cometary Nuclei After Rosetta
- Author
-
Groussin, O., Attree, N., Brouet, Y., Ciarletti, V., Davidsson, B., Filacchione, G., Fischer, H.-H., Gundlach, B., Knapmeyer, M., Knollenberg, J., Kokotanekova, R., Kührt, E., Leyrat, C., Marshall, D., Pelivan, I., Skorov, Y., Snodgrass, C., Spohn, T., and Tosi, F.
- Published
- 2019
- Full Text
- View/download PDF
7. The Thermal, Mechanical, Structural, and Dielectric Properties of Cometary Nuclei After Rosetta
- Author
-
Groussin, O., Attree, N., Brouet, Y., Ciarletti, V., Davidsson, B., Filacchione, G., Fischer, H.-H., Gundlach, B., Knapmeyer, M., Knollenberg, J., Kokotanekova, R., Kührt, E., Leyrat, C., Marshall, D., Pelivan, I., Skorov, Y., Snodgrass, C., Spohn, T., and Tosi, F.
- Published
- 2019
- Full Text
- View/download PDF
8. A nanolander for a space mission to an active asteroid in the main belt.
- Author
-
Ho, T.M., Kührt, E., Zhang, X.J., Auster, U., Biele, J., Grott, M., Grundmann, J.T., He, H., Hördt, A., Huang, J.C., Ma, T., Mottola, S., Otto, K., Plettemeier, D., Qin, L., Rubin, M., Schmitz, N., Ulamec, S., and Vincent, J.B.
- Subjects
- *
ASTEROIDS , *SCIENTIFIC apparatus & instruments - Abstract
A nanolander (CALICUT) with a total mass of about 10 kg was proposed in response to the CNSA (China National Space Administration) Announcement of Opportunity (AO) for an Asteroid Exploration Mission (AEM) by a joint European-Chinese team to operate on an active asteroid in the main belt. CALICUT is a further development of the MASCOT lander that flew on the Hayabusa 2 mission to asteroid Ryugu. The nanolander was designed with mobility and autonomy capabilities. It will be able to operate for at least 6 weeks to measure the physical, morphological and compositional properties of the target. The data can be used to derive answers to scientific questions, such as what drives activity on active asteroids, and identify similarities and differences between inactive asteroids and classical comets. CALICUT carries a payload of four scientific instruments with a total mass of about 2 kg to provide unique measurements that can only be done directly on the surface. • We present a new nanolander concept for asteroid exploration based on the MASCOT lander onboard the Hayabusa2 mission. • The nanolander is suitable for versatile missions to explore active asteroids. • The nanolander will be able to perform long term in-situ investigations (> 1 month) with an extended suite of 4 science instruments. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
9. 3D Direct Simulation Monte Carlo Modelling of the Inner Gas Coma of Comet 67P/Churyumov–Gerasimenko: A Parameter Study
- Author
-
Liao, Y., Su, C. C., Marschall, R., Wu, J. S., Rubin, M., Lai, I. L., Ip, W. H., Keller, H. U., Knollenberg, J., Kührt, E., Skorov, Y. V., and Thomas, N.
- Published
- 2016
- Full Text
- View/download PDF
10. Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past
- Author
-
El-Maarry, M. Ramy, Groussin, O., Thomas, N., Pajola, M., Auger, A.-T., Davidsson, B., Hu, X., Hviid, S. F., Knollenberg, J., Güttler, C., Tubiana, C., Fornasier, S., Feller, C., Hasselmann, P., Vincent, J.-B., Sierks, H., Barbieri, C., Lamy, P., Rodrigo, R., Koschny, D., Keller, H. U., Rickman, H., A’Hearn, M. F., Barucci, M. A., Bertaux, J.-L., Bertini, I., Besse, S., Bodewits, D., Cremonese, G., Da Deppo, V., Debei, S., De Cecco, M., Deller, J., Deshapriya, J. D. P., Fulle, M., Gutierrez, P. J., Hofmann, M., Ip, W.-H., Jorda, L., Kovacs, G., Kramm, J.-R., Kührt, E., Küppers, M., Lara, L. M., Lazzarin, M., Lin, Z.-Yi, Lopez Moreno, J. J., Marchi, S., Marzari, F., Mottola, S., Naletto, G., Oklay, N., Pommerol, A., Preusker, F., Scholten, F., and Shi, X.
- Published
- 2017
- Full Text
- View/download PDF
11. THERMAP: a mid-infrared spectro-imager for space missions to small bodies in the inner solar system
- Author
-
Groussin, O., Licandro, J., Helbert, J., Reynaud, J. L., Levacher, P., Reyes García-Talavera, M., Alí-Lagoa, V., Blanc, P. E., Brageot, E., Davidsson, B., Delbó, M., Deleuze, M., Delsanti, A., Diaz Garcia, J. J., Dohlen, K., Ferrand, D., Green, S. F., Jorda, L., Joven Álvarez, E., Knollenberg, J., Kührt, E., Lamy, P., Lellouch, E., Le Merrer, J., Marty, B., Mas, G., Rossin, C., Rozitis, B., Sunshine, J., Vernazza, P., and Vives, S.
- Published
- 2016
- Full Text
- View/download PDF
12. Hydrocode simulations of the largest crater on asteroid Lutetia
- Author
-
Cremonese, G., Martellato, E., Marzari, F., Kuhrt, E., Scholten, F., Preusker, F., Wünnemann, K., Borin, P., Massironi, M., Simioni, E., and Ip, W.
- Published
- 2012
- Full Text
- View/download PDF
13. The landing(s) of Philae and inferences about comet surface mechanical properties
- Author
-
Biele, J., Ulamec, S., Maibaum, M., Roll, R., Witte, L., Jurado, E., Muñoz, P., Arnold, W., Auster, H.-U., Casas, C., Faber, C., Fantinati, C., Finke, F., Fischer, H.-H., Geurts, K., Güttler, C., Heinisch, P., Herique, A., Hviid, S., Kargl, G., Knapmeyer, M., Knollenberg, J., Kofman, W., Kömle, N., Kührt, E., Lommatsch, V., Mottola, S., Pardo de Santayana, R., Remetean, E., Scholten, F., Seidensticker, K. J., Sierks, H., and Spohn, T.
- Published
- 2015
14. Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko
- Author
-
Spohn, T., Knollenberg, J., Ball, A. J., Banaszkiewicz, M., Benkhoff, J., Grott, M., Grygorczuk, J., Hüttig, C., Hagermann, A., Kargl, G., Kaufmann, E., Kömle, N., Kührt, E., Kossacki, K. J., Marczewski, W., Pelivan, I., Schrödter, R., and Seiferlin, K.
- Published
- 2015
15. The nonmagnetic nucleus of comet 67P/Churyumov-Gerasimenko
- Author
-
Auster, H.-U., Apathy, I., Berghofer, G., Fornacon, K.-H., Remizov, A., Carr, C., Güttler, C., Haerendel, G., Heinisch, P., Hercik, D., Hilchenbach, M., Kührt, E., Magnes, W., Motschmann, U., Richter, I., Russell, C. T., Przyklenk, A., Schwingenschuh, K., Sierks, H., and Glassmeier, K.-H.
- Published
- 2015
16. The morphological diversity of comet 67P/Churyumov-Gerasimenko
- Author
-
Thomas, N., Sierks, H., Barbieri, C., Lamy, P. L., Rodrigo, R., Rickman, H., Koschny, D., Keller, H. U., Agarwal, J., AʼHearn, M. F., Angrilli, F., Auger, A.-T., Barucci, M. A., Bertaux, J.-L., Bertini, I., Besse, S., Bodewits, D., Cremonese, G., Da Deppo, V., Davidsson, B., De Cecco, M., Debei, S., El-Maarry, M. R., Ferri, F., Fornasier, S., Fulle, M., Giacomini, L., Groussin, O., Gutierrez, P. J., Güttler, C., Hviid, S. F., Ip, W.-H., Jorda, L., Knollenberg, J., Kramm, J.-R., Kührt, E., Küppers, M., La Forgia, F., Lara, L. M., Lazzarin, M., Moreno, Lopez J. J., Magrin, S., Marchi, S., Marzari, F., Massironi, M., Michalik, H., Moissl, R., Mottola, S., Naletto, G., Oklay, N., Pajola, M., Pommerol, A., Preusker, F., Sabau, L., Scholten, F., Snodgrass, C., Tubiana, C., Vincent, J.-B., and Wenzel, K.-P.
- Published
- 2015
17. Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun
- Author
-
Rotundi, A., Sierks, H., Corte, Della V., Fulle, M., Gutierrez, P. J., Lara, L., Barbieri, C., Lamy, P. L., Rodrigo, R., Koschny, D., Rickman, H., Keller, H. U., López-Moreno, J. J., Accolla, M., Agarwal, J., AʼHearn, M. F., Altobelli, N., Angrilli, F., Barucci, M. A., Bertaux, J.-L., Bertini, I., Bodewits, D., Bussoletti, E., Colangeli, L., Cosi, M., Cremonese, G., Crifo, J.-F., Da Deppo, V., Davidsson, B., Debei, S., De Cecco, M., Esposito, F., Ferrari, M., Fornasier, S., Giovane, F., Gustafson, B., Green, S. F., Groussin, O., Grün, E., Güttler, C., Herranz, M. L., Hviid, S. F., Ip, W., Ivanovski, S., Jerónimo, J. M., Jorda, L., Knollenberg, J., Kramm, R., Kührt, E., Küppers, M., Lazzarin, M., Leese, M. R., López-Jiménez, A. C., Lucarelli, F., Lowry, S. C., Marzari, F., Epifani, Mazzotta E., McDonnell, J. A. M., Mennella, V., Michalik, H., Molina, A., Morales, R., Moreno, F., Mottola, S., Naletto, G., Oklay, N., Ortiz, J. L., Palomba, E., Palumbo, P., Perrin, J.-M., Rodríguez, J., Sabau, L., Snodgrass, C., Sordini, R., Thomas, N., Tubiana, C., Vincent, J.-B., Weissman, P., Wenzel, K.-P., Zakharov, V., and Zarnecki, J. C.
- Published
- 2015
18. On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko
- Author
-
Sierks, H., Barbieri, C., Lamy, P. L., Rodrigo, R., Koschny, D., Rickman, H., Keller, H. U., Agarwal, J., AʼHearn, M. F., Angrilli, F., Auger, A.-T., Barucci, M. A., Bertaux, J.-L., Bertini, I., Besse, S., Bodewits, D., Capanna, C., Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco, M., Ferri, F., Fornasier, S., Fulle, M., Gaskell, R., Giacomini, L., Groussin, O., Gutierrez-Marques, P., Gutiérrez, P. J., Güttler, C., Hoekzema, N., Hviid, S. F., Ip, W.-H., Jorda, L., Knollenberg, J., Kovacs, G., Kramm, J.-R., Kührt, E., Küppers, M., La Forgia, F., Lara, L. M., Lazzarin, M., Leyrat, C., Moreno, Lopez J. J., Magrin, S., Marchi, S., Marzari, F., Massironi, M., Michalik, H., Moissl, R., Mottola, S., Naletto, G., Oklay, N., Pajola, M., Pertile, M., Preusker, F., Sabau, L., Scholten, F., Snodgrass, C., Thomas, N., Tubiana, C., Vincent, J.-B., Wenzel, K.-P., Zaccariotto, M., and Pätzold, M.
- Published
- 2015
19. Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko
- Author
-
Hässig, M., Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J. J., Bieler, A., Bochsler, P., Briois, C., Calmonte, U., Combi, M., De Keyser, J., Eberhardt, P., Fiethe, B., Fuselier, S. A., Galand, M., Gasc, S., Gombosi, T. I., Hansen, K. C., Jäckel, A., Keller, H. U., Kopp, E., Korth, A., Kührt, E., Le Roy, L., Mall, U., Marty, B., Mousis, O., Neefs, E., Owen, T., Rème, H., Rubin, M., Sémon, T., Tornow, C., Tzou, C.-Y., Waite, J. H., and Wurz, P.
- Published
- 2015
20. Triple F—a comet nucleus sample return mission
- Author
-
Küppers, Michael, Keller, H. U., Kührt, E., A’Hearn, M. F., Altwegg, K., Bertrand, R., Busemann, H., Capria, M. T., Colangeli, L., Davidsson, B., Ehrenfreund, P., Knollenberg, J., Mottola, S., Rathke, A., Weiss, P., Zolensky, M., Akim, E., Basilevsky, A., Galimov, E., Gerasimov, M., Korablev, O., Lomakin, I., Marov, M., Martynov, M., Nazarov, M., Zakharov, A., Zelenyi, L., Aronica, A., Ball, A. J., Barbieri, C., Bar-Nun, A., Benkhoff, J., Biele, J., Biver, N., Blum, J., Bockelée-Morvan, D., Botta, O., Bredehöft, J.-H., Capaccioni, F., Charnley, S., Cloutis, E., Cottin, H., Cremonese, G., Crovisier, J., Crowther, S. A., Epifani, E. M., Esposito, F., Ferrari, A. C., Ferri, F., Fulle, M., Gilmour, J., Goesmann, F., Gortsas, N., Green, S. F., Groussin, O., Grün, E., Gutiérrez, P. J., Hartogh, P., Henkel, T., Hilchenbach, M., Ho, T.-M., Horneck, G., Hviid, S. F., Ip, W.-H., Jäckel, A., Jessberger, E., Kallenbach, R., Kargl, G., Kömle, N. I., Korth, A., Kossacki, K., Krause, C., Krüger, H., Li, Z.-Y., Licandro, J., Lopez-Moreno, J. J., Lowry, S. C., Lyon, I., Magni, G., Mall, U., Mann, I., Markiewicz, W., Martins, Z., Maurette, M., Meierhenrich, U., Mennella, V., Ng, T. C., Nittler, L. R., Palumbo, P., Pätzold, M., Prialnik, D., Rengel, M., Rickman, H., Rodriguez, J., Roll, R., Rost, D., Rotundi, A., Sandford, S., Schönbächler, M., Sierks, H., Srama, R., Stroud, R. M., Szutowicz, S., Tornow, C., Ulamec, S., Wallis, M., Waniak, W., Weissman, P., Wieler, R., Wurz, P., Yung, K. L., and Zarnecki, J. C.
- Published
- 2009
- Full Text
- View/download PDF
21. Cometary dust analogues for physics experiments.
- Author
-
Lethuillier, A, Feller, C, Kaufmann, E, Becerra, P, Hänni, N, Diethelm, R, Kreuzig, C, Gundlach, B, Blum, J, Pommerol, A, Kargl, G, Laddha, S, Denisova, K, Kührt, E, Capelo, H L, Haack, D, Zhang, X, Knollenberg, J, Molinski, N S, and Gilke, T
- Subjects
CHARCOAL ,PHYSICS experiments ,SILICA dust ,DUST ,VACUUM chambers ,PHYSICS laboratories ,PHYSICAL measurements ,MINERAL dusts - Abstract
The CoPhyLab (Cometary Physics Laboratory) project is designed to study the physics of comets through a series of earth-based experiments. For these experiments, a dust analogue was created with physical properties comparable to those of the non-volatile dust found on comets. This 'CoPhyLab dust' is planned to be mixed with water and CO
2 ice and placed under cometary conditions in vacuum chambers to study the physical processes taking place on the nuclei of comets. In order to develop this dust analogue, we mixed two components representative for the non-volatile materials present in cometary nuclei. We chose silica dust as a representative for the mineral phase and charcoal for the organic phase, which also acts as a darkening agent. In this paper, we provide an overview of known cometary analogues before presenting measurements of eight physical properties of different mixtures of the two materials and a comparison of these measurements with known cometary values. The physical properties of interest are particle size, density, gas permeability, spectrophotometry, and mechanical, thermal, and electrical properties. We found that the analogue dust that matches the highest number of physical properties of cometary materials consists of a mixture of either 60 per cent/40 per cent or 70 per cent/30 per cent of silica dust/charcoal by mass. These best-fit dust analogue will be used in future CoPhyLab experiments. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
22. ROMAP: Rosetta Magnetometer and Plasma Monitor
- Author
-
Auster, H. U., Apathy, I., Berghofer, G., Remizov, A., Roll, R., Fornacon, K. H., Glassmeier, K. H., Haerendel, G., Hejja, I., Kührt, E., Magnes, W., Moehlmann, D., Motschmann, U., Richter, I., Rosenbauer, H., Russell, C. T., Rustenbach, J., Sauer, K., Schwingenschuh, K., Szemerey, I., and Waesch, R.
- Published
- 2007
- Full Text
- View/download PDF
23. OSIRIS – The Scientific Camera System Onboard Rosetta
- Author
-
Keller, H. U., Barbieri, C., Lamy, P., Rickman, H., Rodrigo, R., Wenzel, K.-P., Sierks, H., A’Hearn, M. F., Angrilli, F., Angulo, M., Bailey, M. E., Barthol, P., Barucci, M. A., Bertaux, J.-L., Bianchini, G., Boit, J.-L., Brown, V., Burns, J. A., Büttner, I., Castro, J. M., Cremonese, G., Curdt, W., Deppo, V. Da, Debei, S., Cecco, M. De, Dohlen, K., Fornasier, S., Fulle, M., Germerott, D., Gliem, F., Guizzo, G. P., Hviid, S. F., Ip, W.-H., Jorda, L., Koschny, D., Kramm, J. R., Kührt, E., Küppers, M., Lara, L. M., Llebaria, A., López, A., López-Jimenez, A., López-Moreno, J., Meller, R., Michalik, H., Michelena, M. D., Müller, R., Naletto, G., Origné, A., Parzianello, G., Pertile, M., Quintana, C., Ragazzoni, R., Ramous, P., Reiche, K.-U., Reina, M., Rodríguez, J., Rousset, G., Sabau, L., Sanz, A., Sivan, J.-P., Stöckner, K., Tabero, J., Telljohann, U., Thomas, N., Timon, V., Tomasch, G., Wittrock, T., and Zaccariotto, M.
- Published
- 2007
- Full Text
- View/download PDF
24. Interaction of the Solar Wind with Weak Obstacles: Hybrid Simulations for Weakly Active Comets and for Mars
- Author
-
Motschmann, U. and Kührt, E.
- Published
- 2006
- Full Text
- View/download PDF
25. From Hale–Bopp's Activity to Properties of its Nucleus
- Author
-
Kührt, E.
- Published
- 2002
- Full Text
- View/download PDF
26. H2O-Activity of Comet Hale-Bopp
- Author
-
Kührt, E.
- Published
- 1999
- Full Text
- View/download PDF
27. Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System
- Author
-
Sierks, H., Lamy, P., Barbieri, C., Koschny, D., Rickman, H., Rodrigo, R., AʼHearn, M. F., Angrilli, F., Barucci, M. A., Bertaux, J. L., Bertini, I., Besse, S., Carry, B., Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco, M., De Leon, J., Ferri, F., Fornasier, S., Fulle, M., Hviid, S. F., Gaskell, R. W., Groussin, O., Gutierrez, P., Ip, W., Jorda, L., Kaasalainen, M., Keller, H. U., Knollenberg, J., Kramm, R., Kührt, E., Küppers, M., Lara, L., Lazzarin, M., Leyrat, C., Moreno, Lopez J. J., Magrin, S., Marchi, S., Marzari, F., Massironi, M., Michalik, H., Moissl, R., Naletto, G., Preusker, F., Sabau, L., Sabolo, W., Scholten, F., Snodgrass, C., Thomas, N., Tubiana, C., Vernazza, P., Vincent, J. B., Wenzel, K. P., Andert, T., Pätzold, M., and Weiss, B. P.
- Published
- 2011
- Full Text
- View/download PDF
28. E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta
- Author
-
Keller, H. U., Barbieri, C., Koschny, D., Lamy, P., Rickman, H., Rodrigo, R., Sierks, H., AʼHearn, M. F., Angrilli, F., Barucci, M. A., Bertaux, J.-L., Cremonese, G., Da Deppo, V., Davidsson, B., De Cecco, M., Debei, S., Fornasier, S., Fulle, M., Groussin, O., Gutierrez, P. J., Hviid, S. F., Ip, W.-H., Jorda, L., Knollenberg, J., Kramm, J. R., Kührt, E., Küppers, M., Lara, L.-M., Lazzarin, M., Moreno, J. Lopez, Marzari, F., Michalik, H., Naletto, G., Sabau, L, Thomas, N., Wenzel, K.-P., Bertini, I., Besse, S., Ferri, F., Kaasalainen, M., Lowry, S., Marchi, S., Mottola, S., Sabolo, W., Schröder, S. E., Spjuth, S., and Vernazza, P.
- Published
- 2010
- Full Text
- View/download PDF
29. On the importance of dust in cometary nuclei
- Author
-
Kührt, E. K. and Keller, H. U.
- Published
- 1996
- Full Text
- View/download PDF
30. Interpretation of HMC images by a combined thermal and gasdynamic model
- Author
-
Knollenberg, J., Kührt, E., and Keller, H. U.
- Published
- 1996
- Full Text
- View/download PDF
31. The CoPhyLab comet-simulation chamber.
- Author
-
Kreuzig, C., Kargl, G., Pommerol, A., Knollenberg, J., Lethuillier, A., Molinski, N. S., Gilke, T., Bischoff, D., Feller, C., Kührt, E., Sierks, H., Hänni, N., Capelo, H., Güttler, C., Haack, D., Otto, K., Kaufmann, E., Schweighart, M., Macher, W., and Tiefenbacher, P.
- Subjects
COMETS ,SCIENTIFIC apparatus & instruments ,SOLAR system ,PHYSICS laboratories ,LOW temperatures ,COOLING systems - Abstract
The Comet Physics Laboratory (CoPhyLab) is an international research program to study the physical properties of cometary analog materials under simulated space conditions. The project is dedicated to studying, with the help of multiple instruments and the different expertise and background from the different partners, the physics of comets, including the processes inside cometary nuclei, the activity leading to the ejection of dust and gas, and the sub-surface and surface evolution of cometary nuclei when exposed to solar illumination. CoPhyLab will provide essential information on the formation and evolution of comets and insights into the origins of primitive Solar System bodies. To this end, we constructed a new laboratory that hosts several small-scale experiments and a large-scale comet-simulation chamber (L-Chamber). This chamber has been designed and constructed to host ice–dust samples with a diameter of up to 250 mm and a variable height between 100 and 300 mm. The cometary-analog samples will be kept at temperatures below 120 K and pressures around 10
−6 mbar to ensure cometary-like conditions. In total, 14 different scientific instruments are attached to the L-Chamber to study the temporal evolution of the physical properties of the sample under different insolation conditions. Due to the implementation of a scale inside the L-Chamber that can measure weight changes of the samples with high precision, the cooling system is mechanically decoupled from the sample holder and cooling of the samples occurs by radiation only. The constructed chamber allows us to conduct uninterrupted experiments at low temperatures and pressures up to several weeks. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
32. Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs
- Author
-
Attree , N., Groussin , O., Jorda , L., Nébouy , D., Thomas , N., Brouet , Y., Kührt , E., Preusker , F., Scholten , F., Knollenberg , J., Hartogh , P., Sierks , H., Barbieri , C., Lamy , P., Rodrigo , R., Koschny , D., Rickman , H., Keller , H. U., A'Hearn , M. F., Auger , A.-T., Barucci , M. A., Bertaux , J.-L., Bertini , I., Bodewits , D., Boudreault , S., Cremonese , G., Da Deppo , V., Davidsson , B., Debei , S., De Cecco , M., Deller , J., El-Maarry , M. R., Fornasier , S., Fulle , M., Gutiérrez , P. J., Güttler , C., Hviid , S., Ip , W.-H., Kovacs , G., Kramm , J. R., Küppers , M., Lara , L. M., Lazzarin , M., Lopez Moreno , J. J., Lowry , S., Marchi , S., Marzari , F., Mottola , S., Naletto , G., Oklay , N., Pajola , M., Toth , I., Tubiana , C., Vincent , J.-B., Shi , X., A’Hearn , M., Gutierrez , J., Lara , M., Laboratoire d'Astrophysique de Marseille ( LAM ), Aix Marseille Université ( AMU ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS ), Physikalisches Institut [Bern], Universität Bern [Bern], DLR Institute of Planetary Research, German Aerospace Center ( DLR ), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] ( DLR ), Max-Planck-Institut für Sonnensystemforschung ( MPS ), Dipartimento di Fisica e Astronomia 'Galileo Galilei', Universita degli Studi di Padova, Research and Scientific Support Department, ESTEC ( RSSD ), European Space Research and Technology Centre ( ESTEC ), European Space Agency ( ESA ) -European Space Agency ( ESA ), Space Research Centre [Warsaw] ( CBK ), Polska Akademia Nauk ( PAN ), Department of Astronomy [College Park], University of Maryland [College Park], Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' ( CISAS ), INAF - Osservatorio Astronomico di Padova ( OAPD ), Istituto Nazionale di Astrofisica ( INAF ), CNR Institute for Photonics and Nanotechnologies ( IFN ), Consiglio Nazionale delle Ricerche [Roma] ( CNR ), Department of Physics and Astronomy [Uppsala], Uppsala University, INAF - Osservatorio Astronomico di Trieste ( OAT ), Instituto de Astrofísica de Andalucía ( IAA ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), Space Science Institute [Macau] ( SSI ), Macau University of Science and Technology ( MUST ), European Space Astronomy Center ( ESAC ), European Space Agency ( ESA ), Centre for Astrophysics and Planetary Science [Canterbury] ( CAPS ), University of Kent [Canterbury], Solar System Exploration Research Virtual Institute ( SSERVI ), Southwest Research Institute [Boulder] ( SwRI ), Istituto Nazionale di Fisica Nucleare, Sezione di Padova ( INFN, Sezione di Padova ), National Institute for Nuclear Physics ( INFN ), Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Institute for Nanoscale Physics and Chemistry ( INPAC ), and Katholieke Universiteit Leuven ( KU Leuven )
- Subjects
Methods: observational ,comets: general ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,comets: individual: Churyumov-Gerasimenko - Abstract
International audience; We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features andthe implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).
- Published
- 2018
- Full Text
- View/download PDF
33. Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko
- Author
-
Auger , A.-T., Groussin , O., Jorda , L., El-Maarry , M. R., Bouley , S., Sejourne , A., Gaskell , R., Capanna , C., Davidsson , B., Marchi , S., Höfner , S., Lamy , P. L., Sierks , H., Barbieri , C., Rodrigo , R., Koschny , D., Rickman , H., Keller , H. U., Agarwal , J., A'Hearn , M. F., Barucci , M. A., Bertaux , J.-L., Bertini , I., Cremonese , G., Da Deppo , V., Debei , S., De Cecco , M., Fornasier , S., Fulle , M., Gutiérrez , P. J., Güttler , C., Hviid , S., Ip , W.-H., Knollenberg , J., Kramm , J.-R., Kührt , E., Küppers , M., Lara , L. M., Lazzarin , M., Lopez Moreno , J. J., Marzari , F., Massironi , M., Michalik , H., Naletto , G., Oklay , N., Pommerol , A., Sabau , L., Thomas , N., Tubiana , C., Vincent , J.-B., Wenzel , K.-P., Lamy , L., A’Hearn , M., Barucci , A., BERTAUX , L., Gutierrez , J., Ip , H., Laboratoire d'Astrophysique de Marseille ( LAM ), Aix Marseille Université ( AMU ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS ), Physikalisches Institut [Bern], Universität Bern [Bern], Institut de Mécanique Céleste et de Calcul des Ephémérides ( IMCCE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Interactions et dynamique des environnements de surface ( IDES ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Planetary Science Institute [Tucson] ( PSI ), Department of Physics and Astronomy [Uppsala], Uppsala University, Solar System Exploration Research Virtual Institute ( SSERVI ), Southwest Research Institute [Boulder] ( SwRI ), Max-Planck-Institut für Sonnensystemforschung ( MPS ), Dipartimento di Fisica e Astronomia 'Galileo Galilei', Universita degli Studi di Padova, Research and Scientific Support Department, ESTEC ( RSSD ), European Space Research and Technology Centre ( ESTEC ), European Space Agency ( ESA ) -European Space Agency ( ESA ), Space Research Centre [Warsaw] ( CBK ), Polska Akademia Nauk ( PAN ), European Space Agency ( ESA ), Department of Astronomy [College Park], University of Maryland [College Park], Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' ( CISAS ), INAF - Osservatorio Astronomico di Padova ( OAPD ), Istituto Nazionale di Astrofisica ( INAF ), CNR Institute for Photonics and Nanotechnologies ( IFN ), Consiglio Nazionale delle Ricerche [Roma] ( CNR ), INAF - Osservatorio Astronomico di Trieste ( OAT ), Instituto de Astrofísica de Andalucía ( IAA ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), DLR Institute of Planetary Research, German Aerospace Center ( DLR ), Space Science Institute [Macau] ( SSI ), Macau University of Science and Technology ( MUST ), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] ( DLR ), European Space Astronomy Center ( ESAC ), Istituto Nazionale di Fisica Nucleare, Sezione di Padova ( INFN, Sezione di Padova ), National Institute for Nuclear Physics ( INFN ), Dipartimento di Geoscienze [Padova], Institut für Datentechnik und Kommunikationsnetze, Technische Universität Braunschweig [Braunschweig], Instituto Nacional de Técnica Aeroespacial ( INTA ), Institute for Nanoscale Physics and Chemistry ( INPAC ), and Katholieke Universiteit Leuven ( KU Leuven )
- Subjects
Comets ,Geological processes ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Nucleus ,[ SDU ] Sciences of the Universe [physics] ,[ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph] - Abstract
International audience; We report on the detection and characterization of more than 6300 polygons on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, using images acquired by the OSIRIS camera onboard Rosetta between August 2014 and March 2015. They are found in consolidated terrains and grouped in localized networks. They are present at all latitudes (from North to South) and longitudes (head, neck, and body), sometimes on pit walls or following lineaments. About 1.5% of the observed surface is covered by polygons. Polygons have an homogeneous size across the nucleus, with 90% of them in the size range 1 - 5 m and a mean size of 3.0 ± 1.4 m. They show different morphologies, depending on the width and depth of their trough. They are found in networks with 3- or 4-crack intersection nodes. The polygons observed on 67P are consistent with thermal contraction crack polygons formed by the diurnal or seasonal temperature variations in a hard (MPa) and consolidated sintered layer of water ice, located a few centimeters below the surface. Our thermal analysis shows an evolution of thermal contraction crack polygons according to the local thermal environment, with more evolved polygons (i.e. deeper and larger troughs) where the temperature and the diurnal and seasonal temperature range are the highest. Thermal contraction crack polygons are young surface morphologies that probably formed after the injection of 67P in the inner solar system, typically 100,000 years ago, and could be as young as a few orbital periods, following the decreasing of its perihelion distance in 1959 from 2.7 to 1.3 a.u. Meter scale thermal contraction crack polygons should be common features on the nucleus of Jupiter family comets.
- Published
- 2018
- Full Text
- View/download PDF
34. Thermal fracturing on comets
- Author
-
Attree, N., Groussin, Olivier, Jorda, L., Rodionov, S., Auger, Anne-Therese, Thomas, N., Brouet, Y., Poch, O., Kührt, E., Knapmeyer, Martin, Preusker, Frank, Scholten, Frank, Knollenberg, Jörg, Hviid, Stubbe, Hartogh, P., Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Universität Bern [Bern], Physikalisches Institut [Bern], DLR Institute of Planetary Research, German Aerospace Center (DLR), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Max-Planck-Institut für Sonnensystemforschung (MPS), and Max-Planck-Gesellschaft
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,planets and satellites: physical evolution ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,comets: general ,520 Astronomy ,FOS: Physical sciences ,comets: individual: 67P/Churyumov-Gerasimenko ,620 Engineering ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov--Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet's surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet's complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia ($\gtrsim50$ J m$^{-2}$ K$^{-1}$ s$^{-1/2}$) and ice content ($\gtrsim 45\%$ at the equator). In this case, stresses penetrate to a typical depth of $\sim0.25$ m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs., Comment: 11 pages, 11 figures. Accepted for publication in A&A
- Published
- 2018
- Full Text
- View/download PDF
35. Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs
- Author
-
Attree, N., Groussin, O., Jorda, L., Nébouy, D., Thomas, Nicolas, Brouet, Yann, Kührt, E., Preusker, F., Scholten, F., Knollenberg, J., Hartogh, P., Sierks, H., Barbieri, C., Lamy, P., Rodrigo, R., Koschny, D., Rickman, H., Keller, H. U., and A'Hearn, M. F.
- Subjects
520 Astronomy ,620 Engineering - Abstract
We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet’s gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features and the implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the ~ 10 − 100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).
- Published
- 2018
- Full Text
- View/download PDF
36. The global meter-level shape model of comet 67P/Churyumov-Gerasimenko
- Author
-
Preusker, F., Scholten, F., Matz, K.-D., Roatsch, T., Hviid, S., Mottola, S., Knollenberg, J., Kührt, E., Pajola, M., Oklay, N., Vincent, J.-B., Davidsson, B., A'Hearn, M. F., Agarwal, J., Barbieri, C., Barucci, M. A., Bertaux, J.-L., Bertini, I., Cremonese, G., Da Deppo, V., Debei, S., De Cecco, M., Fornasier, S., Fulle, M., Groussin, O., Gutiérrez, P. J., Güttler, C., Ip, W.-H., Jorda, L., Keller, H. U., Koschny, D., Kramm, J. R., Küppers, M., Lamy, P., Lara, L. M., Lazzarin, M., Lopez Moreno, J. J., Marzari, F., Massironi, M., Naletto, G., Rickman, H., Rodrigo, R., Sierks, H., Thomas, Nicolas, and Tubiana, C.
- Subjects
520 Astronomy ,620 Engineering - Abstract
We performed a stereo-photogrammetric (SPG) analysis of more than 1500 Rosetta/OSIRIS NAC images of comet 67P/Churyumov-Gerasimenko (67P). The images with pixel scales in the range 0.2
- Published
- 2017
- Full Text
- View/download PDF
37. Summer fireworks on comet 67P
- Author
-
Vincent , J.-B., A'Hearn , M. F., Lin , Z.-Y., El-Maarry , M. R., Pajola , M., Sierks , H., Barbieri , C., Lamy , P. L., Rodrigo , R., Koschny , D., Rickman , H., Keller , H. U., Agarwal , J., Barucci , M. A., Bertaux , J.-L., Bertini , I., Besse , S., Bodewits , D., Cremonese , G., Da Deppo , V., Davidsson , B., Debei , S., De Cecco , M., Deller , J., Fornasier , S., Fulle , M., Gicquel , A., Groussin , O., Gutiérrez , P. J., Gutiérrez-Marquez , P., Güttler , C., Höfner , S., Hofmann , M., Hviid , S. F., Ip , W.-H., Jorda , L., Knollenberg , J., Kovacs , G., Kramm , J.-R., Kührt , E., Küppers , M., Lara , L. M., Lazzarin , M., Lopez Moreno , J. J., Marzari , F., Massironi , M., Mottola , S., Naletto , G., Oklay , N., Preusker , F., Scholten , F., Shi , X., Thomas , N., Toth , I., Tubiana , C., A'Hearn , F., Lamy , L., Gutierrez , J., Hviid , F., Lara , M., Max-Planck-Institut für Sonnensystemforschung ( MPS ), Department of Astronomy [College Park], University of Maryland [College Park], Institute of Astronomy [Taiwan] ( IANCU ), National Central University [Taiwan] ( NCU ), Physikalisches Institut [Bern], Universität Bern [Bern], Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' ( CISAS ), Universita degli Studi di Padova, Dipartimento di Fisica e Astronomia 'Galileo Galilei', Laboratoire d'Astrophysique de Marseille ( LAM ), Aix Marseille Université ( AMU ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS ), Research and Scientific Support Department, ESTEC ( RSSD ), European Space Research and Technology Centre ( ESTEC ), European Space Agency ( ESA ) -European Space Agency ( ESA ), Space Research Centre [Warsaw] ( CBK ), Polska Akademia Nauk ( PAN ), European Space Agency ( ESA ), Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), INAF - Osservatorio Astronomico di Padova ( OAPD ), Istituto Nazionale di Astrofisica ( INAF ), CNR Institute for Photonics and Nanotechnologies ( IFN ), Consiglio Nazionale delle Ricerche [Roma] ( CNR ), Department of Physics and Astronomy [Uppsala], Uppsala University, INAF - Osservatorio Astronomico di Trieste ( OAT ), Laboratoire des Sciences des Procédés et des Matériaux ( LSPM ), Université Paris 13 ( UP13 ) -Université Sorbonne Paris Cité ( USPC ) -Institut Galilée-Centre National de la Recherche Scientifique ( CNRS ), Instituto de Astrofísica de Andalucía ( IAA ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), Space Science Institute [Macau] ( SSI ), Macau University of Science and Technology ( MUST ), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] ( DLR ), DLR Institute of Planetary Research, German Aerospace Center ( DLR ), European Space Astronomy Center ( ESAC ), Istituto Nazionale di Fisica Nucleare, Sezione di Padova ( INFN, Sezione di Padova ), National Institute for Nuclear Physics ( INFN ), Dipartimento di Geoscienze [Padova], Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Institute for Nanoscale Physics and Chemistry ( INPAC ), and Katholieke Universiteit Leuven ( KU Leuven )
- Subjects
comets: individual: 67P/Churyumov ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[ SDU ] Sciences of the Universe [physics] ,[ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Gerasimenko - Abstract
International audience; During its 2 yr mission around comet 67P/Churyumov-Gerasimenko, ESA's Rosetta spacecraft had the unique opportunity to follow closely a comet in the most active part of its orbit. Many studies have presented the typical features associated with the activity of the nucleus, such as localized dust and gas jets. Here, we report on series of more energetic transient events observed during the 3 months surrounding the comet's perihelion passage in 2015 August. We detected and characterized 34 outbursts with the Rosetta cameras, one every 2.4 nucleus rotations. We identified three main dust plume morphologies associated with these events: a narrow jet, a broad fan, and more complex plumes featuring both previous types together. These plumes are comparable in scale and temporal variation to what has been observed on other comets. We present a map of the outbursts' source locations, and discuss the associated topography. We find that the spatial distribution sources on the nucleus correlate well with morphological region boundaries, especially in areas marked by steep scarps or cliffs. Outbursts occur either in the early morning or shortly after the local noon, indicating two potential processes: morning outbursts may be triggered by thermal stresses linked to the rapid change of temperature; afternoon events are most likely related to the diurnal or seasonal heat wave reaching volatiles buried under the first surface layer. In addition, we propose that some events can be the result of a completely different mechanism, in which most of the dust is released upon the collapse of a cliff.
- Published
- 2016
- Full Text
- View/download PDF
38. The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations
- Author
-
Jorda , L., Gaskell , R., Capanna , C., Hviid , S., Lamy , P., Ďurech , J., Faury , G., Groussin , O., Gutiérrez , P., Jackman , C., Keihm , S. J., Keller , H. U., Knollenberg , J., Kührt , E., Marchi , S., Mottola , S., PALMER , E., Schloerb , F. P., Sierks , H., Vincent , J.-B., A'Hearn , M. F., Barbieri , C., Rodrigo , R., Koschny , D., Rickman , H., Barucci , M. A., Bertaux , J. L., Bertini , I., Cremonese , G., Da Deppo , V., Davidsson , B., Debei , S., De Cecco , M., Fornasier , S., Fulle , M., Güttler , C., Ip , W.-H., Kramm , J. R., Küppers , M., Lara , L. M., Lazzarin , M., Lopez Moreno , J. J., Marzari , F., Naletto , G., Oklay , N., Thomas , N., Tubiana , C., Wenzel , K.-P., Vincent , B., A’Hearn , F., Lara , M., Laboratoire d'Astrophysique de Marseille ( LAM ), Aix Marseille Université ( AMU ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS ), Planetary Science Institute [Tucson] ( PSI ), DLR Institute of Planetary Research, German Aerospace Center ( DLR ), Astronomical Institute of Charles University, Charles University [Prague], NASA Goddard Space Flight Center ( GSFC ), Max-Planck-Institut für Sonnensystemforschung ( MPS ), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] ( DLR ), Solar System Exploration Research Virtual Institute ( SSERVI ), Southwest Research Institute [Boulder] ( SwRI ), Department of Astronomy [College Park], University of Maryland [College Park], Dipartimento di Fisica e Astronomia 'Galileo Galilei', Universita degli Studi di Padova, Research and Scientific Support Department, ESTEC ( RSSD ), European Space Research and Technology Centre ( ESTEC ), European Space Agency ( ESA ) -European Space Agency ( ESA ), Space Research Centre [Warsaw] ( CBK ), Polska Akademia Nauk ( PAN ), Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' ( CISAS ), INAF - Osservatorio Astronomico di Padova ( OAPD ), Istituto Nazionale di Astrofisica ( INAF ), CNR Institute for Photonics and Nanotechnologies ( IFN ), Consiglio Nazionale delle Ricerche [Roma] ( CNR ), Department of Physics and Astronomy [Uppsala], Uppsala University, INAF - Osservatorio Astronomico di Trieste ( OAT ), Space Science Institute [Macau] ( SSI ), Macau University of Science and Technology ( MUST ), European Space Astronomy Center ( ESAC ), European Space Agency ( ESA ), Instituto de Astrofísica de Andalucía ( IAA ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), Istituto Nazionale di Fisica Nucleare, Sezione di Padova ( INFN, Sezione di Padova ), National Institute for Nuclear Physics ( INFN ), Hydrosystèmes et bioprocédés ( UR HBAN ), and Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture ( IRSTEA )
- Subjects
Image processing ,nucleus ,Comets ,origin ,dynamics ,Data reduction techniques ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; The Rosetta spacecraft reached Comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) in August 2014 at an heliocentric distance of 3.6 a.u. and was then put in orbit around its nucleus to perform detailed observations. Among the collected data are the images acquired by the OSIRIS instrument up to the perihelion passage of the comet in August 2015, which allowed us to map the entire nucleus surface at high-resolution in the visible. Stereophotoclinometry methods have been used to reconstruct a global high-resolution shape model and to monitor its rotational parameters using data collected up to perihelion. The nucleus has a conspicuous bilobate shape with overall dimensions along its principal axes of (4.34 ± 0.02) × (2.60 ± 0.02) × (2.12 ± 0.06) km. The best-fit ellipsoid dimensions of the individual lobes along their principal axes of inertia are found to be 4.10 × 3.52 × 1.63 km and 2.50 × 2.14 × 1.64 km. Their volume amounts to 66% and 27% of the total volume of the nucleus. The two lobes are connected by a "neck" whose volume has been estimated to represent ∼7% of the total volume of the comet. Combining the derived volume of 18.8 ± 0.3 km3 with the mass of 9.982 ± 0.003 × 1012 kg determined by the Rosetta/RSI experiment, we obtained a bulk density of the nucleus of 532 ± 7 kg m-3 . Together with the companion value of 535 ± 35 kg m-3 deduced from the stereophotogrammetry shape model of the nucleus (Preusker et al. [2015] Astron. Astrophys. 583, A33), these constitute the first reliable and most accurate determination of the density of a cometary nucleus to date. The calculated porosity is quite large, ranging approximately from 70% to 75% depending upon the assumed density of the dust grains and the dust-to-ice mass ratio. The nature of the porosity, either micro or macro or both, remains unconstrained. The coordinates of the center of gravity are not compatible with a uniform nucleus density. The direction of the offset between the center of gravity and the center of figure suggests that the big lobe has a slightly higher bulk density compared to the small one. the center of mass position cannot be explained by different, but homogenous densities in the two lobes. The initial rotational period of 12.4041 ± 0.0001 h of the nucleus persisted until October 2014. It then slightly increased to a maximum of 12.4304 h reached on 19 May 2015 and finally dropped to 12.305 h just before perihelion on August 10, 2015. A periodogram analysis of the (RA, Dec) direction of the Z-axis of the comet obtained in parallel with the shape reconstruction exhibits a highly significant minima at 11.5 ± 0.5 day clearly indicating an excited rotational state with an amplitude of 0.15 ± 0.03°.
- Published
- 2016
- Full Text
- View/download PDF
39. Detection of exposed H₂O ice on the nucleus of comet 67P/Churyumov-Gerasimenko
- Author
-
A’Hearn, M. F., Vincent, J.-B., Fonti, S., Rousseau, B., Hviid, S. F., Da Deppo, V., Perna, D., Fornasier, S., Davidsson, B. J. R., Ip, W., Lamy, P. L., Tubiana, C., Marzari, F., Bertaux, J.-L., Pommerol, Antoine, Palomba, E., Mottola, S., Ciarniello, M., Cremonese, G., Koschny, D., Knollenberg, J., Naletto, G., Jorda, L., Kappel, D., De Sanctis, C., Rickman, H., Arnold, G., Barbieri, C., Erard, S., Capria, M. T., Thomas, Nicolas, Groussin, O., Lara, L., Güttler, C., Sierks, H., Massironi, M., Feller, C., Schmitt, B., Kührt, E., Cerroni, P., Leyrat, C., Küppers, M., Fulchignoni, M., Kramm, J.-R., Barucci, M. A., Drossart, P., Rodrigo, R., Bockelée-Morvan, D., Keller, H. U., Guilbert-Lepoutre, A., Elmaarry, Mohamed Ramy, Quirico, E., Lopez Moreno, J. J., Tosi, F., Bertini, I., Lazzarin, M., Fulle, M., Hasselmann, P. H., Raponi, A., Pajola, M., Deshapriya, J. D. P., Filacchione, G., Capaccioni, F., Merlin, F., Oklay, N., and Mancarella, F.
- Subjects
530 Physics - Abstract
Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H₂O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H₂O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H₂O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H₂O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H₂O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots.
- Published
- 2016
- Full Text
- View/download PDF
40. Transient water ice on comet 67P/Churyumov-Gerasimenko
- Author
-
De Sanctis, M.C., Capaccioni, F., Filacchione, G., Ciarnello, M., Raponi, A., Formisano, M., Tosi, F., Schmitt, B., Arnold, Gabriele, Kührt, E., Mottola, S., Ammannito, E., Beck, P., Bockelee-Morvan, D., Capria, M. T., Combi, M., Erard, S., Ip, W-H., Leyrat, C., McCord, Thomas B., Quirico, E., Stephan, K., Jaumann, R., and Fonti, S.
- Subjects
Asteroiden und Kometen ,Planetengeologie ,67P ,Leitungsbereich PF ,Rosetta ,VIRTIS ,water ice - Abstract
Ice has been observed on other cometary surfaces as patches of pure ice mixed with the non-ice component of the surface. In case of comet 9P/Tempel 1, these ice patches were not directly linked with the comet gas activity and the main sources of gases were indicated in the comet interior. On comet 67P, VIRTIS observes surface ice mixed with a non-ice organic rich component, in a region were the localized water activity occurs. Moreover, the ice signature is variable with time and illumination conditions suggesting a cyclic process of sublimation-condensation of water ice on the comet surface. The cyclic replenishment of ice, due to the light/dark changes, in the first comet layers can be the key for the strong local activity seen from the comet neck.
- Published
- 2015
41. Morphology of Aolian Bedforms on 67P/Churyumov-Gerasimenko
- Author
-
Tirsch, Daniela, Mottola, S., Otto, K., Kührt, E., Jaumann, R., Arnold, G., Grothues, H.-G., Hamm, M., Michaelis, H., Pelivan, Ivanka, Proffe, G., Scholten, F., and Bibring, Jean-Pierre
- Subjects
Planetengeologie ,Asteroiden und Kometen ,67P/Churyumov-Gerasimenko ,Leitungsbereich PF ,Planetengeodäsie ,ROLIS ,Planetare Sensorsysteme ,Vorstandsbereich Raumfahrtmanagement ,aeolian bedforms - Published
- 2015
42. The nucleus and coma of 67P/Churyumov-Gerasimenko: highlights of the Rosetta-VIRTIS results
- Author
-
Capaccioni, F., Filacchione, G., Erard, S., Arnold, Gabriele, Bockelee-Morvan, D., De Sanctis, M.C., Leyrat, C., Tosi, F., Schmitt, B., Quirico, E., Capria, M. T., Ciarnello, M., Raponi, A., Kührt, E., Piccioni, G., Palomba, E., Drossart, P., Cerroni, P., McCord, Thomas B., and Barucci, Antonella
- Subjects
67P ,Leitungsbereich PF ,Rosetta ,VIRTIS - Abstract
This paper will describe the major results obtained so far during the prelanding and initial escort phases (July 2014–February 2015) by the VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) dual channel spectrometer onboard Rosetta. The scientific goals of the VIRTIS instrument are related to the study of the nucleus surface composition and of its temperature and to the study of the gaseous and dust components of the coma. These are achieved by studying the reflected and emitted radiance of the comet in the spectral range 0.25-5.0 μm with a Mapping Spectrometer (VIRTIS-M) and a High Resolution Spectrometer (VIRTIS-H). The nucleus observations were performed with spatial resolution varying from the initial 500m down to 2.5m and have generated compositional maps of the illuminated areas. The nucleus integrated normal albedo has been calculated as 0.060 ± 0.003 at 0.55 μm, and reflectance spectra display distinct gradients in the VIS and IR regions (5-25 and 1.5-5 % kÅ-1 respectively). These results suggest a surface made of an association of carbon bearing species and opaque minerals such as sulfides. In addition a broad absorption feature in the 2.9-3.6μm range has been observed; this band is present across the entire illuminated surface and, its shape and width are compatible with absorptions due to non-volatile organic macromolecular materials, complex mixture of various types of C-H and/or O-H chemical groups. Ice rich regions of very limited extent, have also been observed. The surface temperature has been measured since the first distant observations of the nucleus in thermal emission. The highest surface temperature seen so far is 220K, which is an indication of a surface structure largely covered by a porous crust, mainly devoid of water ice. Water vapour and carbon dioxide molecules have been observed in the coma and their variability, as a function of altitude and geographic location has been studied. The molecules display an anti-correlated behaviour in their spatial distribution, which could suggest either intrinsic differences in the nucleus composition or insolation induced variability, which most probably will imply seasonal changes.
- Published
- 2015
43. Seasonal temperature effects on comet 67P/Churyumov-Gerasimenko as inferred from Rosetta/VIRTIS
- Author
-
Tosi, F., Capaccioni, F., Filacchione, G., Leyrat, C., Raponi, A., Arnold, Gabriele, Capria, M. T., De Sanctis, M.C., Erard, S., Piccioni, G., Schmitt, B., Bockelee-Morvan, D., Combe, J.-P., Formisano, M., Kührt, E., Longobardo, A, Mottola, S., Palomba, E., ITA, USA, GBR, and FRA
- Subjects
Asteroiden und Kometen ,67P ,Leitungsbereich PF ,Rosetta ,temperature ,VIRTIS - Abstract
The Visible InfraRed Thermal Imaging Spectrometer (VIRTIS) [1] on board the orbiter of the ESA Rosetta mission operates in the spectral range 0.25-5.1 μm. VIRTIS is continually used to map and investigate the surface composition of the comet nucleus in its uppermost layer within a depth of a few tens of microns [2,3,4]. Moreover, the temperature of these surface layers can be mapped utilizing VIRTIS' long wavelength spectral measurements. To do this, the VIRTIS team uses a Bayesian approach to nonlinear inversion [5], which was already adopted in the past for other small bodies [2,5]. The superficial layer sampled by VIRTIS is significantly different from the much thicker layers sampled by the Microwave Instrument for the Rosetta Orbiter (MIRO) [6]. Furthermore, VIRTIS is not sensitive to physical temperatures on the nightside of the comet, where the signal is considerably low. Typically, 170 K is the minimum surface temperature that can be measured while preserving small formal errors (
- Published
- 2015
44. Comet 67P: Thermal Maps and Local Properties as Derived from Rosetta/VIRTIS data
- Author
-
Tosi, F., Capria, M. T., Capaccioni, F., Filacchione, G., Erard, S., Leyrat, C., Bockelee-Morvan, D., De Sanctis, M.C., Raponi, A., Ciarnello, M., Schmitt, B., Arnold, Gabriele, Mottola, S., Fonti, S., Palomba, E., Longobardo, A, Cerroni, P., Piccioni, G., Drossart, P., Kührt, E., ITA, FRA, and DEU
- Subjects
Asteroiden und Kometen ,67P ,Leitungsbereich PF ,Rosetta ,temperature ,Astrophysics::Earth and Planetary Astrophysics ,VIRTIS - Abstract
Comet 67P is shown to be everywhere rich in organic materials with little to no water ice visible on the surface. In the range of heliocentric distances from 3.59 to 2.74 AU, daytime observed surface temperatures retrieved from VIRTIS data are overall comprised in the range between 180 and 220 K, which is incompatible with large exposures of water ice and is consistent with a low-albedo, organics-rich surface. The accuracy of temperature retrieval is as good as a few K in regions of the comet unaffected by shadowing or limb proximity. Maximum temperature values as high as 230 K have been recorded in very few places. The highest values of surface temperature in the early Mapping phase were obtained in August 2014, during observations at small phase angles implying that the observed surface has a large predominance of small incidence angles, and local solar times (LST) centered around the maximum daily insolation. In all cases, direct correlation with topographic features is observed, i.e. largest temperature values are generally associated with the smallest values of illumination angles. So far, there is no evidence of thermal anomalies, i.e. places of the surface that are intrinsically warmer or cooler than surrounding terrains observed at the same local solar time and under similar solar illumination. For a given LST, the maximum temperature mainly depends on the solar incidence angle and on surface properties such as thermal inertia and albedo. Since VIRTIS is able to observe the same point of the surface on various occasions under different conditions of solar illumination and LST, it is possible to reconstruct the temperature of that point at different times of the comet's day, thus building diurnal profiles of temperature that are useful to constrain thermal inertia. The availability of spatially-resolved, accurate temperature observations, significantly spaced out in local solar time, provides clues to the physical structure local features, which complements the compositional investigation based on imaging spectroscopy data collected at shorter wavelengths. In the VIRTIS thermal images, a note of great interest is provided by the 'neck' of the comet close to the 'body', where, because of the concave shape, the 'head' casts prominent shadows on some areas when they experience maximum daily insolation. This is a place potentially subjected to considerable thermal stresses. We evaluate both the spatial thermal gradients and the temporal thermal gradients, providing implications for the surface structure. Acknowledgements: The authors would like to thank the following institutions and agencies, which supported this work: Italian Space Agency (ASI - Italy), Centre National d'Etudes Spatiales (CNES- France), Deutsches Zentrum für Luft- und Raumfahrt (DLR-Germany), National Aeronautic and Space Administration (NASA-USA) Rosetta Program, Science and Technology Facilities Council (UK). VIRTIS has been built by a consortium, which includes Italy, France and Germany, under the scientific responsibility of the Istituto di Astrofisica e Planetologia Spaziali of INAF, Italy, which guides also the scientific operations. The VIRTIS instrument development has been funded and managed by ASI, with contributions from Observatoire de Meudon financed by CNES, and from DLR. The computational resources used in this research have been supplied by INAF-IAPS through the DataWell project.
- Published
- 2015
45. Thermal Properties of the Surface of 67P/Chryumov-Gerasimenko: Initial Results
- Author
-
Capria, M. T., Tosi, F., Kührt, E., Raponi, A., Formisano, M., De Sanctis, M.C., Capaccioni, F., Filacchione, G., Palomba, E., Longobardo, A, Ciarnello, M., Bockelee-Morvan, D., Erard, S., Leyrat, C., Drossart, P., Arnold, Gabriele, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Asteroiden und Kometen ,67P ,Leitungsbereich PF ,Rosetta ,temperature ,VIRTIS ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The imaging spectrometer VIRTIS onboard Rosetta (Coradini et al., 2007) acquires spectra in the range from the near-UV through the IR (0.25-5 micron). Infrared spectra are affected by thermal emission from the surface of the comet, so the measured radiance in that spectral region can be used to retrieve surface temperatures and spectral emissivities by means of temperature-retrieval algorithms (Tosi et al., 2014, Erard, 2014). The temperature of a surface, and in particular its variation with respect to illumination conditions, depends strongly on the thermal inertia of the materials composing this surface and the sub-surface, but also on the topography and small scale roughness. Theoretical codes computing surface and subsurface temperatures under a range of different assumptions on the composition, activity and physical status of the surface matter are used to reproduce the IR radiances observed, and the apparent/effective thermal inertia determined in this way is assumed to correspond to reality (Capria et al., 2014). The initial results obtained using the data acquired during the approach and pre-landing (July 2014-November 2014) first phases of the Rosetta mission will be presented. Authors acknowledge the funding from Italian, German and French Space Agencies.
- Published
- 2014
46. ASTEROIDFINDER - THE SPACE-BORNE TELESCOPE TO SEARCH FOR NEO ASTEROIDS.
- Author
-
Hartl, M., Mosebach, H., Schubert, J., Michaelis, H., Mottola, S., Kührt, E., and Schindler, K.
- Published
- 2017
- Full Text
- View/download PDF
47. Measurements at the Planetary Emissivity Laboratory in Support of MARA and the TIR Imager on the JAXA Hayabusa II Mission
- Author
-
Helbert, Jörn, Maturilli, Alessandro, Grott, M., Knollenberg, J., Kührt, E., Okada, T., and Spohn, Tilman
- Subjects
Asteroiden und Kometen ,Planetary Emissivity Laboratory ,Planetenphysik ,JAXA Hayabusa II mission ,Terahertz- und Infrarotsensorik ,Institut für Planetenforschung ,MARA ,measurements ,TIR Imager - Published
- 2012
48. Low velocity collisions of porous planetesimals in the early solar system.
- Author
-
de Niem, D., Kührt, E., Hviid, S., and Davidsson, B.
- Subjects
- *
PLANETESIMALS , *SOLAR system , *POROSITY , *DEFORMATIONS (Mechanics) , *CHURYUMOV-Gerasimenko comet - Abstract
The ESA Rosetta mission has shown that Comet 67P/Churuymov–Gerasimenko is bi-lobed, has a high average porosity of around 70%, does not have internal cavities on size scales larger than 10 m, the lobes could have individual sets of onion shell-like layering, and the nucleus surface contains 100 m-scale cylindrical pits. It is currently debated whether these properties are consistent with high-velocity collisional evolution or if they necessarily are surviving signatures of low-velocity primordial accretion. We use an Eulerian hydrocode to study collisions between highly porous bodies of different sizes, material parameters and relative velocities with emphasis on 5–100 m/s to characterize the effects of collisions in terms of deformation, compaction, and heating. We find that accretion of 1 km cometesimals by 3 km nuclei at 13.5 m/s flattens and partially buries the cometesimal with ∼ 1% reduction of the bulk porosity. This structure locally becomes more dense but the global effect of compaction is minor, suggesting that low-velocity accretion does not lead to a ‘bunch of grapes’ structure with large internal cavities but a more homogeneous interior, consistent with Rosetta findings. The mild local compaction associated with accretion is potentially the origin of the observed nucleus layering. In 2D axially symmetric impacts hit-and-stick collisions of similarly-sized nuclei are possible at velocities up to 30 m/s where deformation becomes severe. The bulk porosity is reduced significantly, even at 30–50 m/s relative velocity. To avoid hit-and-run collisions the impact angle must be less than 35°–45° from the surface normal at 10 m/s, and even smaller at higher velocities. Impact heating is insignificant. We find that the small cross section of the 67P neck may require a ≤ 5 m/s impact, unless the cohesion exceeds 10 kPa. We conclude that bi-lobe nucleus formation is possible at velocities typically discussed in hierarchical growth scenarios. Impacts of a 7 m projectile at 100–500 m/s create a rimless cylindrical shaft with vertical walls, up to 50 m wide and 70 m deep. These shafts bear some resemblance with the pits on 67P, particularly if the depth-to-width ratio is reduced by nucleus erosion. Collisions between similarly-sized nuclei above 100 m/s lead to complete disintegration, and even small fragments suffer different degrees of compaction. Thus, we strongly doubt that 67P has been subjected to high-velocity collisions by projectiles larger than those that might have formed the pits, or is the fragment of a larger parent body. We suggest that the observed properties of 67P are more consistent with primordial accretion. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
49. Cliffs versus plains: Can ROSINA/COPS and OSIRIS data of comet 67P/Churyumov-Gerasimenko in autumn 2014 constrain inhomogeneous outgassing?
- Author
-
Marschall, R., Mottola, S., Su, C. C., Liao, Y., Rubin, M., Wu, J. S., Thomas, N., Altwegg, K., Sierks, H., Ip, W. -H., Keller, H. U., Knollenberg, J., Kührt, E., Lai, I. L., Skorov, Y., Jorda, L., Preusker, F., Scholten, F., and Vincent, J. -B.
- Subjects
CHURYUMOV-Gerasimenko comet ,SOLAR radiation ,COSMIC dust - Abstract
Context. This paper describes the modelling of gas and dust data acquired in the period August to October 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. With our 3D gas and dust comae models this work attempts to test the hypothesis that cliff activity on comet 67P/Churyumov-Gerasimenko can solely account for the local gas density data observed by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) and the dust brightnesses seen by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) in the considered time span. Methods. The model uses a previously developed shape model of the nucleus. From this, the water sublimation rates and gas temperatures at the surface are computed. The gas expansion is modelled with a 3D Direct Simulation Monte Carlo algorithm. A dust drag algorithm is then used to compute dust volume number densities in the coma, which are then converted to brightnesses using Mie theory and a line-of-sight integration. Furthermore we have studied the impact of topographic re-radiation on the models. Results. We show that gas activity from only cliff areas produces a fit to the ROSINA/COPS data that is as statistically good as a purely insolation-driven model. In contrast, pure cliff activity does not reproduce the dust brightness observed by OSIRIS and can thus be ruled out. On the other hand, gas activity from the Hapi region in addition to cliff activity produces a statistically better fit to the ROSINA/COPS data than purely insolation-driven outgassing and also fits the OSIRIS observations rather well. We found that topographic re-radiation does not contribute significantly to the sublimation behaviour of H2O but plays an important role in how the gas flux interacts with the irregular shape of the nucleus. Conclusions. We demonstrate that fits to the observations are non-unique. We can conclude however that gas and dust activity from cliffs and the Hapi region are consistent with the ROSINA/COPS and OSIRIS data sets for the considered time span and are thus a plausible solution. Models with activity from low gravitational slopes alone provide a statistically inferior solution. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
50. Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta.
- Author
-
Hu, X., Shi, X., Sierks, H., Fulle, M., Blum, J., Keller, H. U., Kührt, E., Davidsson, B., Güttler, C., Gundlach, B., Pajola, M., Bodewits, D., Vincent, J.-B., Oklay, N., Massironi, M., Fornasier, S., Tubiana, C., Groussin, O., Boudreault, S., and Höfner, S.
- Abstract
Context. Dust deposits or dust cover are a prevalent morphology in the northern hemi-nucleus of comet 67P/Churyumov-Gerasimenko (67P). The evolution of the dust deposits was captured by the OSIRIS camera system onboard the Rosetta spacecraft having escorted the comet for over two years. The observations shed light on the fundamental role of cometary activity in shaping and transforming the surface morphology. Aims. We aim to present OSIRIS observations of surface changes over the dust deposits before and after perihelion. The distribution of changes and a timeline of their occurrence are provided. We perform a data analysis to quantify the surface changes and investigate their correlation to water activity from the dust deposits. We further discuss how the results of our investigation are related to other findings from the Rosetta mission. Methods. Surface changes were detected via systematic comparison of images, and quantified using shape-from-shading technique. Thermal models were applied to estimate the erosion of water ice in response to the increasing insolation over the areas where surface changes occurred. Modeling results were used for the interpretation of the observed surface changes. Results. Surface changes discussed here were concentrated at mid-latitudes, between about 20°N and 40°N, marking a global transition from the dust-covered to rugged terrains. The changes were distributed in open areas exposed to ample solar illumination and likely subject to enhanced surface erosion before perihelion. The occurrence of changes followed the southward migration of the sub-solar point across the latitudes of their distribution. The erosion at locations of most changes was at least about 0.5 m, but most likely did not exceed several meters. The erosive features before perihelion had given way to a fresh, smooth cover of dust deposits after perihelion, suggesting that the dust deposits had been globally restored by at least about 1 m with ejecta from the intensely illuminated southern hemi-nucleus around perihelion, when the north was inactive during polar night. Conclusions. The erosion and restoration of the northern dust deposits are morphological expressions of seasonality on 67P. Based on observations and thermal modeling results, it is inferred that the dust deposits contained a few percent of water ice in mass on average. Local inhomogeneity in water abundance at spatial scales below tens of meters is likely. We suspect that dust ejected from the deposits may not have escaped the comet in bulk. That is, at least half of the ejected mass was afloat in the inner-coma or/and redeposited over other areas of the nucleus. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.