Back to Search Start Over

Thermal fracturing on comets

Authors :
Attree, N.
Groussin, Olivier
Jorda, L.
Rodionov, S.
Auger, Anne-Therese
Thomas, N.
Brouet, Y.
Poch, O.
Kührt, E.
Knapmeyer, Martin
Preusker, Frank
Scholten, Frank
Knollenberg, Jörg
Hviid, Stubbe
Hartogh, P.
Laboratoire d'Astrophysique de Marseille (LAM)
Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Universität Bern [Bern]
Physikalisches Institut [Bern]
DLR Institute of Planetary Research
German Aerospace Center (DLR)
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Max-Planck-Institut für Sonnensystemforschung (MPS)
Max-Planck-Gesellschaft
Source :
Attree, N.; Groussin, O.; Jorda, L.; Rodionov, S.; Auger, A-T.; Thomas, Nicolas; Brouet, Yann; Poch, Olivier; Kührt, E.; Knapmeyer, M.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hviid, S.; Hartogh, P. (2018). Thermal fracturing on comets. Applications to 67P/Churyumov-Gerasimenko. Astronomy and astrophysics, 610(A76), A76. EDP Sciences 10.1051/0004-6361/201731937 , Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2018, 610, pp.A76. ⟨10.1051/0004-6361/201731937⟩
Publication Year :
2018
Publisher :
EDP Sciences, 2018.

Abstract

We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov--Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet's surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet's complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia ($\gtrsim50$ J m$^{-2}$ K$^{-1}$ s$^{-1/2}$) and ice content ($\gtrsim 45\%$ at the equator). In this case, stresses penetrate to a typical depth of $\sim0.25$ m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs.<br />Comment: 11 pages, 11 figures. Accepted for publication in A&A

Details

Language :
English
ISSN :
00046361
Database :
OpenAIRE
Journal :
Attree, N.; Groussin, O.; Jorda, L.; Rodionov, S.; Auger, A-T.; Thomas, Nicolas; Brouet, Yann; Poch, Olivier; Kührt, E.; Knapmeyer, M.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hviid, S.; Hartogh, P. (2018). Thermal fracturing on comets. Applications to 67P/Churyumov-Gerasimenko. Astronomy and astrophysics, 610(A76), A76. EDP Sciences 10.1051/0004-6361/201731937 <http://dx.doi.org/10.1051/0004-6361/201731937>, Astronomy and Astrophysics-A&amp;A, Astronomy and Astrophysics-A&amp;A, EDP Sciences, 2018, 610, pp.A76. ⟨10.1051/0004-6361/201731937⟩
Accession number :
edsair.doi.dedup.....792278cdfa18c7a99f6971dd4b3e99d0
Full Text :
https://doi.org/10.1051/0004-6361/201731937