201 results on '"Ilyina T"'
Search Results
2. Boldness as an Individual Trait of Behaviour in a Natural Population of Birds
- Author
-
Ilyina, T. A., Kiseleva, A. V., Bushuev, A. V., Ivankina, E. V., and Kerimov, A. B.
- Published
- 2024
- Full Text
- View/download PDF
3. On the Concentration of Vitamins A and E in the Tissues of the Bank Vole (Myodes (Clethrionomys) glareolus) and Common Shrew (Sorex araneus) Inhabiting Karelia
- Author
-
Ilyina, T. N., Baishnikova, I. V., Yakimova, A. E., and Zaitseva, I. A.
- Published
- 2024
- Full Text
- View/download PDF
4. The Content of Retinol, α-Tocopherol and Glutathione in Tissues of the Wild Boar (Sus scrofa L.) Inhabiting the Northwest of Russia
- Author
-
Zaitseva, I. A., Baishnikova, I. V., Panchenko, D. V., Kalinina, S. N., Ilyina, T. N., and Antonova, E. P.
- Published
- 2023
- Full Text
- View/download PDF
5. Retinol and α-Tocopherol Content in the Liver and Skeletal Muscle of Bats (Chiroptera) during Hibernation and Summer Activity
- Author
-
Ilyina, T. N. and Baishnikova, I. V.
- Published
- 2022
- Full Text
- View/download PDF
6. Prolonged Light Deprivation Modulates the Age-Related Changes in α-Tocopherol Level in Rats
- Author
-
Baishnikova, I. V., Ilyina, T. N., Khizhkin, E. A., and Ilyukha, V. A.
- Published
- 2022
- Full Text
- View/download PDF
7. Adaptive Immunity Systems of Bacteria: Association with Self-Synthesizing Transposons, Polyfunctionality
- Author
-
Ilyina, T. S.
- Published
- 2022
- Full Text
- View/download PDF
8. Heat-Resistant Polyorganosiloxane Dielectrics
- Author
-
Kostyleva, E. I., Novikov, A. N., Ilyina, T. A., Dedov, N. A., and Shchukina, I. A.
- Published
- 2022
- Full Text
- View/download PDF
9. The Role of Bacterial Biofilms in Chronic Infectious Processes and the Search for Methods to Combat Them
- Author
-
Ilyina, T. S. and Romanova, Yu. M.
- Published
- 2021
- Full Text
- View/download PDF
10. Effect of Long-Term Light Deprivation on α-Tocopherol Content in Rats during Ontogeny
- Author
-
Baishnikova, I. V., Ilyina, T. N., Khizhkin, E. A., Ilyukha, V. A., and Vinogradova, I. A.
- Published
- 2021
- Full Text
- View/download PDF
11. Erratum to: Retinol and α-Tocopherol Content in the Liver and Skeletal Muscle of Bats (Chiroptera) during Hibernation and Summer Activity
- Author
-
Ilyina, T. N., Baishnikova, I. V., and Belkin, V. V.
- Published
- 2022
- Full Text
- View/download PDF
12. Association of Success in Interspecific Rearing of Nestlings with the Width of Trophic Niche of the Recipient Species in Hollow-Nesting Birds
- Author
-
Ilyina, T. A., Krupitsky, A. V., and Bushuev, A. V.
- Published
- 2020
- Full Text
- View/download PDF
13. A Look at Phage Therapy One Hundred Years After the Bacteriophages Discovery
- Author
-
Ilyina, T. S., Tolordava, E. R., and Romanova, Yu. M.
- Published
- 2019
- Full Text
- View/download PDF
14. Adaptation to Food Deprivation in Mammals: Vitamins A and E
- Author
-
Ilyina, T. N. and Baishnikova, I. V.
- Published
- 2019
- Full Text
- View/download PDF
15. Comparative Research into the Effect of Vitamins A and E on the Differential Leucocyte Count and the Morphometric Parameters of Lymphocytes in Carnivorous Mammals (Carnivora)
- Author
-
Baishnikova, I. V., Uzenbaeva, L. B., Ilyukha, V. A., Kizhina, A. G., Pechorina, E. F., and Ilyina, T. N.
- Published
- 2019
- Full Text
- View/download PDF
16. The ICON Earth System Model version 1.0
- Author
-
Jungclaus, J. H., Lorenz, S. J., Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crüger, T., De‐Vrese, P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S., Hanke, M., Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W. A., Nabel, J. E. M. S., Notz, D., Pohlmann, H., Putrasahan, D. A., Raddatz, T., Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., Storch, J.‐S., Wachsmann, F., Wieners, K.‐H., Ziemen, F., Stevens, B., Marotzke, J., Claussen, M., Lorenz, S. J., 1 Max‐Planck‐Institute for Meteorology Hamburg Germany, Schmidt, H., Brovkin, V., Brüggemann, N., Chegini, F., Crüger, T., De‐Vrese, P., Gayler, V., Giorgetta, M. A., Gutjahr, O., Haak, H., Hagemann, S., 4 Helmholtz Zentrum Hereon Geesthacht Germany, Hanke, M., 5 Deutsches Klimarechenzentrum Hamburg Germany, Ilyina, T., Korn, P., Kröger, J., Linardakis, L., Mehlmann, C., Mikolajewicz, U., Müller, W. A., Nabel, J. E. M. S., Notz, D., Pohlmann, H., Putrasahan, D. A., Raddatz, T., Ramme, L., Redler, R., Reick, C. H., Riddick, T., Sam, T., Schneck, R., Schnur, R., Schupfner, M., von Storch, J.‐S., Wachsmann, F., Wieners, K.‐H., Ziemen, F., Stevens, B., Marotzke, J., and Claussen, M.
- Subjects
Global and Planetary Change ,General Earth and Planetary Sciences ,Environmental Chemistry ,ddc:550.285 ,ddc:551.63 - Abstract
This work documents the ICON‐Earth System Model (ICON‐ESM V1.0), the first coupled model based on the ICON (ICOsahedral Non‐hydrostatic) framework with its unstructured, icosahedral grid concept. The ICON‐A atmosphere uses a nonhydrostatic dynamical core and the ocean model ICON‐O builds on the same ICON infrastructure, but applies the Boussinesq and hydrostatic approximation and includes a sea‐ice model. The ICON‐Land module provides a new framework for the modeling of land processes and the terrestrial carbon cycle. The oceanic carbon cycle and biogeochemistry are represented by the Hamburg Ocean Carbon Cycle module. We describe the tuning and spin‐up of a base‐line version at a resolution typical for models participating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON‐ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are well‐balanced top‐of‐atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP models, but ICON‐ESM performs less well than its predecessor, the Max Planck Institute Earth System Model. Problematic biases are diagnosed in ICON‐ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub‐surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea‐ice cover in both hemispheres. ICON‐ESM V1.0 serves as a basis for further developments that will take advantage of ICON‐specific properties such as spatially varying resolution, and configurations at very high resolution., Plain Language Summary: ICON‐ESM is a completely new coupled climate and earth system model that applies novel design principles and numerical techniques. The atmosphere model applies a non‐hydrostatic dynamical core, both atmosphere and ocean models apply unstructured meshes, and the model is adapted for high‐performance computing systems. This article describes how the component models for atmosphere, land, and ocean are coupled together and how we achieve a stable climate by setting certain tuning parameters and performing sensitivity experiments. We evaluate the performance of our new model by running a set of experiments under pre‐industrial and historical climate conditions as well as a set of idealized greenhouse‐gas‐increase experiments. These experiments were designed by the Coupled Model Intercomparison Project (CMIP) and allow us to compare the results to those from other CMIP models and the predecessor of our model, the Max Planck Institute for Meteorology Earth System Model. While we diagnose overall satisfactory performance, we find that ICON‐ESM features somewhat larger biases in several quantities compared to its predecessor at comparable grid resolution. We emphasize that the present configuration serves as a basis from where future development steps will open up new perspectives in earth system modeling., Key Points: This work documents ICON‐ESM 1.0, the first version of a coupled model based on the ICON framework. Performance of ICON‐ESM is assessed by means of CMIP6 Diagnosis, Evaluation, and Characterization of Klima experiments at standard CMIP‐type resolution. ICON‐ESM reproduces the observed temperature evolution. Biases in clouds, winds, sea‐ice, and ocean properties are larger than in MPI‐ESM., European Union H2020 ESM2025, European Union H2020 COMFORT, European Union H2020ESiWACE2, Deutsche Forschungsgemeinschaft TRR181, Deutsche Forschungsgemeinschaft EXC 2037, European Union H2020, Deutscher Wetterdienst, Bundesministerium fuer Bildung und Forschung, http://esgf-data.dkrz.de/search/cmip6-dkrz/, https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability, http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=RUBY-0_ICON-_ESM_V1.0_Model
- Published
- 2022
- Full Text
- View/download PDF
17. Climate-driven variability of the Southern Ocean CO2 sink.
- Author
-
Mayot, N., Le Quéré, C., Rödenbeck, C., Bernardello, R., Bopp, L., Djeutchouang, L. M., Gehlen, M., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ilyina, T., Keeling, R. F., Landschützer, P., Manning, A. C., Patara, L., Resplandy, L., Schwinger, J., Séférian, R., and Watson, A. J.
- Subjects
ANTARCTIC oscillation ,OCEAN ,ATMOSPHERIC carbon dioxide ,MINE ventilation - Abstract
The Southern Ocean is a major sink of atmospheric CO
2 , but the nature and magnitude of its variability remains uncertain and debated. Estimates based on observations suggest substantial variability that is not reproduced by process-based ocean models, with increasingly divergent estimates over the past decade. We examine potential constraints on the nature and magnitude of climate-driven variability of the Southern Ocean CO2 sink from observation-based air–sea O2 fluxes. On interannual time scales, the variability in the air–sea fluxes of CO2 and O2 estimated from observations is consistent across the two species and positively correlated with the variability simulated by ocean models. Our analysis suggests that variations in ocean ventilation related to the Southern Annular Mode are responsible for this interannual variability. On decadal time scales, the existence of significant variability in the air–sea CO2 flux estimated from observations also tends to be supported by observation-based estimates of O2 flux variability. However, the large decadal variability in air–sea CO2 flux is absent from ocean models. Our analysis suggests that issues in representing the balance between the thermal and non-thermal components of the CO2 sink and/or insufficient variability in mode water formation might contribute to the lack of decadal variability in the current generation of ocean models. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
18. Filamentous bacteriophages and their role in the virulence and evolution of pathogenic bacteria
- Author
-
Ilyina, T. S.
- Published
- 2015
- Full Text
- View/download PDF
19. Local oceanic CO2 outgassing triggered by terrestrial carbon fluxes during deglacial flooding
- Author
-
Extier, T., Six, K., Liu, B., Paulsen, H., and Ilyina, T.
- Abstract
Exchange of carbon between the ocean and the atmosphere is a key process that influences past climates via glacial–interglacial variations of the CO2 concentration. The melting of ice sheets during deglaciations induces a sea level rise which leads to the flooding of coastal land areas, resulting in the transfer of terrestrial organic matter to the ocean. However, the consequences of such fluxes on the ocean biogeochemical cycle and on the uptake and release of CO2 are poorly constrained. Moreover, this potentially important exchange of carbon at the land–sea interface is not represented in most Earth system models. We present here the implementation of terrestrial organic matter fluxes into the ocean at the transiently changing land–sea interface in the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) and investigate their effect on the biogeochemistry during the last deglaciation. Our results show that during the deglaciation, most of the terrestrial organic matter inputs to the ocean occurs during Meltwater Pulse 1a (between 15–14 ka) which leads to the transfer of 21.2 Gt C of terrestrial carbon (mostly originating from wood and humus) to the ocean. Although this additional organic matter input is relatively small in comparison to the global ocean inventory (0.06 %) and thus does not have an impact on the global CO2 flux, the terrestrial organic matter fluxes initiate oceanic outgassing in regional hotspots like in Indonesia for a few hundred years. Finally, sensitivity experiments highlight that terrestrial organic matter fluxes are the drivers of oceanic outgassing in flooded coastal regions during Meltwater Pulse 1a. Furthermore, the magnitude of outgassing is rather insensitive to higher carbon-to-nutrient ratios of the terrestrial organic matter. Our results provide a first estimate of the importance of terrestrial organic matter fluxes in a transient deglaciation simulation. Moreover, our model development is an important step towards a fully coupled carbon cycle in an Earth system model applicable to simulations at glacial–interglacial cycles.
- Published
- 2022
20. Global Carbon Budget 2022
- Author
-
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, and Environmental Sciences
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set.
- Published
- 2022
21. Seamless Integration of the Coastal Ocean in Global Marine Carbon Cycle Modeling
- Author
-
Mathis, M., Logemann, K., Maerz, J., Lacroix, F., Hagemann, S., Chegini, F., Ramme, L., Ilyina, T., Korn, P., Schrum, C., 1 Helmholtz‐Zentrum Hereon Institute of Coastal Systems Geesthacht Germany, 2 Max‐Planck‐Institute for Meteorology Hamburg Germany, 3 Max‐Planck‐Institute for Biogeochemistry Jena Germany, and 5 Institute of Oceanography University of Hamburg Hamburg Germany
- Subjects
Global and Planetary Change ,marine carbon cycle ,ddc:551 ,high‐resolution modeling ,coastal ocean ,General Earth and Planetary Sciences ,Environmental Chemistry ,global modeling ,ocean‐biogiochemistry ,variable‐resolution grid - Abstract
We present the first global ocean‐biogeochemistry model that uses a telescoping high resolution for an improved representation of coastal carbon dynamics: ICON‐Coast. Based on the unstructured triangular grid topology of the model, we globally apply a grid refinement in the land‐ocean transition zone to better resolve the complex circulation of shallow shelves and marginal seas as well as ocean‐shelf exchange. Moreover, we incorporate tidal currents including bottom drag effects, and extend the parameterizations of the model's biogeochemistry component to account explicitly for key shelf‐specific carbon transformation processes. These comprise sediment resuspension, temperature‐dependent remineralization in the water column and sediment, riverine matter fluxes from land including terrestrial organic carbon, and variable sinking speed of aggregated particulate matter. The combination of regional grid refinement and enhanced process representation enables for the first time a seamless incorporation of the global coastal ocean in model‐based Earth system research. In particular, ICON‐Coast encompasses all coastal areas around the globe within a single, consistent ocean‐biogeochemistry model, thus naturally accounting for two‐way coupling of ocean‐shelf feedback mechanisms at the global scale. The high quality of the model results as well as the efficiency in computational cost and storage requirements proves this strategy a pioneering approach for global high‐resolution modeling. We conclude that ICON‐Coast represents a new tool to deepen our mechanistic understanding of the role of the land‐ocean transition zone in the global carbon cycle, and to narrow related uncertainties in global future projections., Plain Language Summary: The coastal ocean is an area hardly taken into account by current climate change assessment activities. Yet, its capacity in carbon dioxide (CO2) uptake and storage is crucial to be included in a science‐based development of sustainable climate change mitigation and adaptation strategies. Earth system models are powerful tools to investigate the marine carbon cycle of the open ocean. The coastal ocean, however, is poorly represented in global models to date, because of missing key processes controlling coastal carbon dynamics and too coarse spatial resolutions to adequately simulate coastal circulation features. Here, we introduce the first global ocean‐biogeochemistry model with a dedicated representation of the coastal ocean and associated marine carbon dynamics: ICON‐Coast. In this model, we globally apply a higher resolution in the coastal ocean and extend the accounted physical and biogeochemical processes. This approach enables for the first time a consistent, seamless incorporation of the global coastal ocean in model‐based Earth system research. In particular, ICON‐Coast represents a new tool to deepen our understanding about the role of the land‐ocean transition zone in the global climate system, and to narrow related uncertainties in possible and plausible climate futures., Key Points: We introduce the first global ocean‐biogeochemistry model with a dedicated representation of coastal carbon dynamics. We globally apply a grid refinement in the coastal ocean to better resolve regional circulation features, including ocean‐shelf exchange. We explicitly incorporate key physical and biogeochemical processes controlling coastal carbon dynamics., German Research Foundation, Excellence Strategy EXC 2037 (CLICCS), European Union, Horizon2020 Research and Innovation Program (ESM2025), German Federal Ministry of Education, https://doi.org/10.5281/zenodo.6630352
- Published
- 2022
- Full Text
- View/download PDF
22. Light pollution, desynchronosis, and aging: State of the problem and solutions
- Author
-
Vinogradova, I. A., Ilyukha, V. A., Khizhkin, E. A., Uzenbaeva, L. B., Ilyina, T. N., Bukalev, A. V., Goranskii, A. I., Matveeva, Yu. P., Yunash, V. D., and Lotosh, T. A.
- Published
- 2014
- Full Text
- View/download PDF
23. Two-component bacterial regulation systems: Targets of a search for new antibacterial drugs
- Author
-
Tiganova, I. G., Ilyina, T. S., and Romanova, Yu. M.
- Published
- 2014
- Full Text
- View/download PDF
24. Seasonal dynamics of leaf-eating insects biomass and its influence on carotenoid content in feathers of Great Tit nestlings
- Author
-
Ilyina, T. A., Kerimov, A. B., Zagubizhenko, M. V., and Maksimov, G. V.
- Published
- 2013
- Full Text
- View/download PDF
25. Specific immunity and polymorphism of breeding plumage in pied flycatcher (Ficedula hypoleuca) males (Aves: Passeriformes)
- Author
-
Kerimov, A. B., Rogovin, K. A., Ivankina, E. V., Bushuev, A. V., Sokolova, O. V., and Ilyina, T. A.
- Published
- 2013
- Full Text
- View/download PDF
26. 10 New Insights in Climate Science 2020 - a Horizon Scan
- Author
-
Pihl, E., Alfredsson, E., Bengtsson, M., Bowen, K.J., Broto, V.C., Chou, K.T., Cleugh, H., Ebi, K., Edwards, C.M., Fisher, E., Friedlingstein, P., Godoy-Faúndez, A., Gupta, M., Harrington, A.R., Hayes, K., Hayward, B.M., Hebden, S.R., Hickmann, T., Hugelius, G., Ilyina, T., Jackson, R.B., Keenan, T.F., Lambino, R.A., Leuzinger, S., Malmaeus, M., McDonald, R.I., McMichael, C., Miller, C. A., Muratori, M., Nagabhatla, N., Nagendra, H., Passarello, C., Penuelas, J., Pongratz, J., Rockström, J., Romero-Lankao, P., Roy, J., Scaife, A.A., Schlosser, P., Schuur, E., Scobie, M., Sherwood, S.C., Sioen, G.B., Skovgaard, J., Sobenes Obregon, E.A., Sonntag, S., Spangenberg, J.H., Spijkers, O., Srivastava, L., Stammer, D.B., Torres, P.H.C., Turetsky, M.R., Ukkola, A.M., van Vuuren, D.P., Voigt, C., Wannous, C., and Zelinka, M.D.
- Abstract
We summarize some of the past year’s most important findings within climate change-related research. New research has improved our understanding of Earth’s sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments.
- Published
- 2021
27. Mobile ISCR elements: Structure, functions, and role in emergence, increase, and spread of blocks of bacterial multiple antibiotic resistance genes
- Author
-
Ilyina, T. S.
- Published
- 2012
- Full Text
- View/download PDF
28. Phenomenon of visiting in the pied flycatcher (Ficedula Hypoleuca Pall., Passeriformes, Aves) in the breeding period
- Author
-
Ilyina, T. A.
- Published
- 2012
- Full Text
- View/download PDF
29. Stromule-like protrusions of plastid membrane envelope in root cells
- Author
-
Velikanov, G. A., Ponomareva, A. A., Belova, L. P., and Ilyina, T. M.
- Published
- 2011
- Full Text
- View/download PDF
30. Production modules for combined reprocessing of technogenic materials
- Author
-
Glagolev, S. N., Sevostyanov, V. S., Ilyina, T. N., and Uralskii, V. I.
- Published
- 2011
- Full Text
- View/download PDF
31. Miniature repetitive mobile elements of bacteria: Structural organization and properties
- Author
-
Ilyina, T. S.
- Published
- 2010
- Full Text
- View/download PDF
32. The role of a social factor in exploration of a novel environment in great tits (Parus major) under conditions of limited space
- Author
-
Ilyina, T. A., Ivankina, E. V., and Kerimov, A. B.
- Published
- 2010
- Full Text
- View/download PDF
33. Antioxidant System and Energy Provision of the Rat Heart during Aging Depend on Illumination Regimen and Are Resistant to Exogenous Melatonin
- Author
-
Khizhkin, E. A., Ilukha, V. A., Ilyina, T. N., Unzhakov, A. R., Vinogradova, I. A., and Anisimov, V. N.
- Published
- 2010
- Full Text
- View/download PDF
34. Filtration of gaseous and liquid phases during compaction of powder materials
- Author
-
Ilyina, T. N.
- Published
- 2010
- Full Text
- View/download PDF
35. Research, design, calculations, and operating experience. Processes and equipment for chemical and oil-gas production: Mechanism of stagewise polydispersed material granulation
- Author
-
Ilyina, T. N., Sevostyanov, V. S., Uralskii, V. I., Sevostyanov, M. V., and Shkarpetkin, E. A.
- Published
- 2010
- Full Text
- View/download PDF
36. Global Carbon Budget 2020
- Author
-
Friedlingstein, P, O'Sullivan, M, Jones, MW, Andrew, RM, Hauck, J, Olsen, A, Peters, GP, Peters, W, Pongratz, J, Sitch, S, Le Quéré, C, Canadell, JG, Ciais, P, Jackson, RB, Alin, S, Aragão, LEOC, Arneth, A, Arora, V, Bates, NR, Becker, M, Benoit-Cattin, A, Bittig, HC, Bopp, L, Bultan, S, Chandra, N, Chevallier, F, Chini, LP, Evans, W, Florentie, L, Forster, PM, Gasser, T, Gehlen, M, Gilfillan, D, Gkritzalis, T, Gregor, L, Gruber, N, Harris, I, Hartung, K, Haverd, V, Houghton, RA, Ilyina, T, Jain, AK, Joetzjer, E, Kadono, K, Kato, E, Kitidis, V, Korsbakken, JI, Landschützer, P, Lefèvre, N, Lenton, A, Lienert, S, Liu, Z, Lombardozzi, D, Marland, G, Metzl, N, Munro, DR, Nabel, JEMS, Nakaoka, S-I, Niwa, Y, O'Brien, K, Ono, T, Palmer, PI, Pierrot, D, Poulter, B, Resplandy, L, Robertson, E, Rödenbeck, C, Schwinger, J, Séférian, R, Skjelvan, I, Smith, AJP, Sutton, AJ, Tanhua, T, Tans, PP, Tian, H, Tilbrook, B, van der Werf, G, Vuichard, N, Walker, AP, Wanninkhof, R, Watson, AJ, Willis, D, Wiltshire, AJ, Yuan, W, Yue, X, and Zaehle, S
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
- Published
- 2020
37. Bacterial superintegrons, a source of new genes with adaptive functions
- Author
-
Ilyina, T. S.
- Published
- 2006
- Full Text
- View/download PDF
38. Biofilms as a Mode of Existence of Bacteria in External Environment and Host Body: The Phenomenon, Genetic Control, and Regulation Systems of Development
- Author
-
Ilyina, T. S., Romanova, Yu. M., and Gintsburg, A. L.
- Published
- 2004
- Full Text
- View/download PDF
39. Bacterial Genomic Islands: Organization, Function, and Evolutionary Role
- Author
-
Ilyina, T. S. and Romanova, Yu. M.
- Published
- 2002
- Full Text
- View/download PDF
40. A fate and transport ocean model for persistent organic pollutants and its application to the North Sea
- Author
-
Ilyina, T., Pohlmann, T., Lammel, G., and Sündermann, J.
- Published
- 2006
- Full Text
- View/download PDF
41. What was the source of the atmospheric CO2 increase during Holocene?
- Author
-
Brovkin, V., https://orcid.org/0000-0001-6420-3198, Lorenz, S., Raddatz, T., Ilyina, T., https://orcid.org/0000-0002-3475-4842, Heinze , M., Stemmler, I., Toohey, M., Claussen, M., and https://orcid.org/0000-0001-6225-5488
- Abstract
The atmospheric CO2 concentration increased by about 20 ppm from 6000 BCE to the pre-industrial period (1850 CE). Several hypotheses have been proposed to explain mechanisms of this CO2 growth based on either ocean or land carbon sources. Here, we apply the Earth system model MPI-ESM-LR for two transient simulations of climate and carbon cycle dynamics during this period. In the first simulation, atmospheric CO2 is prescribed following ice-core CO2 data. In response to the growing atmospheric CO2 concentration, land carbon storage increases until 2000 BCE, stagnates afterwards, and decreases from 1 CE, while the ocean continuously takes CO2 out of the atmosphere after 4000 BCE. This leads to a missing source of 166 Pg of carbon in the ocean–land–atmosphere system by the end of the simulation. In the second experiment, we applied a CO2 nudging technique using surface alkalinity forcing to follow the reconstructed CO2 concentration while keeping the carbon cycle interactive. In that case the ocean is a source of CO2 from 6000 to 2000 BCE due to a decrease in the surface ocean alkalinity. In the prescribed CO2 simulation, surface alkalinity declines as well. However, it is not sufficient to turn the ocean into a CO2 source. The carbonate ion concentration in the deep Atlantic decreases in both the prescribed and the interactive CO2 simulations, while the magnitude of the decrease in the prescribed CO2 experiment is underestimated in comparison with available proxies. As the land serves as a carbon sink until 2000 BCE due to natural carbon cycle processes in both experiments, the missing source of carbon for land and atmosphere can only be attributed to the ocean. Within our model framework, an additional mechanism, such as surface alkalinity decrease, for example due to unaccounted for carbonate accumulation processes on shelves, is required for consistency with ice-core CO2 data. Consequently, our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
- Published
- 2019
42. Global carbon budget 2019
- Author
-
Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., DBakker, O. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Goldewijk, K. K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., Van Der Werf, G. R., Wiltshire, A. J., and Zaehle, S.
- Published
- 2019
- Full Text
- View/download PDF
43. Global carbon budget 2019 [Data paper]
- Author
-
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quere, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Goldewijk, K. K., Korsbakken, J. I., Landschutzer, P., Lauvset, S. K., Lefèvre, Nathalie, Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, Jems, Nakaoka, S. I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rodenbeck, C., Seferian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H. Q., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FF) are based on energy statistics and cement production data, while emissions from land use change (E-LUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2009-2018), E-FF was 9.5 +/- 0.5 GtC yr 1, E-LUC 1.5 +/- 0.7 GtC yr 1, G(ATM) 4.9 +/- 0.02 GtC yr(-1) (2.3 +/- 0.01 ppm yr(-1)), S-OCEAN 2.5 +/- 0.6 GtC yr(-1), and S-LAND 3.2 +/- 0.6 GtC yr(-1), with a budget imbalance B-IM of 0.4 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in E-FF was about 2.1% and fossil emissions increased to 10.0 +/- 0.5 GtC yr 1, reaching 10 GtC yr(-1) for the first time in history, E-LUC was 1.5 +/- 0.7 GtC yr(-1), for total anthropogenic CO2 emissions of 11.5 +/- 0.9 GtC yr(-1) (42.5 +/- 3.3 GtCO(2)). Also for 2018, G(ATM) was 5.1 +/- 0.2 GtC yr(-1) (2.4 +/- 0.1 ppm yr(-1)), S-OCEAN was 2.6 +/- 0.6 GtC yr(-1), and S-LAND was 3.5 +/- 0.7 GtC yr(-1), with a B-IM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38 +/- 0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6-10 months indicate a reduced growth in E-FF of +0.6% (range of -0.2% to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959-2018, but discrepancies of up to 1 GtC yr(-1) persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018a, b, 2016, 2015a, b, 2014, 2013).
- Published
- 2019
44. A First Intercomparison of the Simulated LGM Carbon Results Within PMIP‐Carbon: Role of the Ocean Boundary Conditions.
- Author
-
Lhardy, F., Bouttes, N., Roche, D. M., Abe‐Ouchi, A., Chase, Z., Crichton, K. A., Ilyina, T., Ivanovic, R., Jochum, M., Kageyama, M., Kobayashi, H., Liu, B., Menviel, L., Muglia, J., Nuterman, R., Oka, A., Vettoretti, G., and Yamamoto, A.
- Subjects
LAST Glacial Maximum ,CARBON sequestration ,RESERVOIR drawdown ,OCEAN ,ATMOSPHERIC carbon dioxide ,SEA level ,CARBON - Abstract
Model intercomparison studies of coupled carbon‐climate simulations have the potential to improve our understanding of the processes explaining the pCO2 drawdown at the Last Glacial Maximum (LGM) and to identify related model biases. Models participating in the Paleoclimate Modeling Intercomparison Project (PMIP) now frequently include the carbon cycle. The ongoing PMIP‐carbon project provides the first opportunity to conduct multimodel comparisons of simulated carbon content for the LGM time window. However, such a study remains challenging due to differing implementation of ocean boundary conditions (e.g., bathymetry and coastlines reflecting the low sea level) and to various associated adjustments of biogeochemical variables (i.e., alkalinity, nutrients, dissolved inorganic carbon). After assessing the ocean volume of PMIP models at the pre‐industrial and LGM, we investigate the impact of these modeling choices on the simulated carbon at the global scale, using both PMIP‐carbon model outputs and sensitivity tests with the iLOVECLIM model. We show that the carbon distribution in reservoirs is significantly affected by the choice of ocean boundary conditions in iLOVECLIM. In particular, our simulations demonstrate a ∼250 GtC effect of an alkalinity adjustment on carbon sequestration in the ocean. Finally, we observe that PMIP‐carbon models with a freely evolving CO2 and no additional glacial mechanisms do not simulate the pCO2 drawdown at the LGM (with concentrations as high as 313, 331, and 315 ppm), especially if they use a low ocean volume. Our findings suggest that great care should be taken on accounting for large bathymetry changes in models including the carbon cycle. Key Points: Ocean volume is a dominant control on Last Glacial Maximum (LGM) carbon sequestration and must be accurately represented in modelsAdjusting the alkalinity to account for the relative change of volume at the LGM induces a large increase of oceanic carbon (of ∼250 GtC)Paleoclimate Modeling Intercomparison Project‐carbon models standardly simulate high LGM CO2 levels (over 300 ppm) despite a larger proportion of carbon in the ocean at LGM than pre‐industrial [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
45. Сапоніни екстрактів Galium aparine та Galium verum
- Author
-
Shynkovenko, I. L., Ilyina, T. V., Kovalyova, A. M., Goryacha, O. V., Golembiovska, O. I., and Koshovyi, O. M.
- Subjects
Підмаренник чіпкий ,підмаренник справжній ,екстракт рідкий ,сапоніни ,ВЕРХ ,UDC: 582.936.1:615.451.1:547.918:543.544.5.068.7 ,Подмаренник цепкий ,подмаренник настоящий ,экстракт жидкий ,сапонины ,ВЭЖХ ,cleavers ,lady’s bedstraw ,liquid extract ,saponins ,HPLC ,УДК: 582.936.1:615.451.1:547.918:543.544.5.068.7 - Abstract
Aim. To determine the qualitative composition and the quantitative content of saponins in the liquid extracts of the herb of cleavers (Galium aparine L.) and lady’s bedstraw (Galium verum L.).Materials and methods. Extracts of the herb of cleavers and lady’s bedstraw were obtained by the triple extraction of the raw material with 96 % ethanol when heating with the subsequent concentration of the combined extracts to the ratio of the raw material : the finished product of 1:1. Saponins were studied by the method of high-performance liquid chromatography (HPLC).Results. As a result of the chromatographic study of extracts of the herb of cleavers and lady’s bedstraw it has been found that they contain 6 and 7 saponins, respectively. The compounds belong to ursane (ursolic, euscaphic, tormentic acids and uvaol), oleanane (oleanolic acid) and lupane (betulin and lupeol) type. In the extract from the herb of cleavers the compounds of ursane derivatives (50 mg/ml) prevail, the dominant compound is euscaphic acid (3.34 mg/ml); in the extract from the herb of lady’s bedstraw there are saponins of lupane derivatives (2.50 mg/ml), lupeol (1.60 mg/ml) is predominant.Conclusions. The results obtained indicate the prospects for further in-depth study of the chemical composition and biological activity of the liquid extracts from the herb of cleavers and lady’s bedstraw., Цель работы – получение, изучение качественного состава и содержания сапонинов экстрактов жидких травы подмаренника цепкого (Galium aparine L.) и подмаренника настоящего (Galium verum L.).Материалы и методы. Экстракты травы подмаренника цепкого и подмаренника настоящего получали путем трехкратной экстракции сырья 96 % спиртом этиловым при нагревании с дальнейшим концентрированием объединенных извлечений до соотношения сырье : готовый продукт – 1:1. Сапонины исследовали методом высокоэффективной жидкостной хроматографии (ВЭЖХ).Результаты и их обсуждение. При хроматографическом изучении экстрактов травы подмаренника цепкого и подмаренника настоящего выявлено, что в них содержатся 6 и 7 сапонинов соответственно. Соединения относятся к к урсановому (урсоловая, эускафовая, торментиновая кислоты и уваол), олеанановому (олеаноловая кислота) и лупановому (бетулин и лупеол) типу. В экстракте из травы подмаренника цепкого больше содержание сапонинов типа урсана (3,50 мг/мл) и доминирующим соединением является эускафовая кислота (3,34 мг/мл). В экстракте из травы подмаренника настоящего превалируют сапонины типа лупана (2,50 мг/мл) и доминирующим соединением является лупеол (1,60 мг/мл).Выводы. Полученные результаты свидетельствуют о перспективности дальнейшего углубленного изучения химического состава и фармакологической активности экстрактов жидких из травы подмаренника цепкого и подмаренника настоящего., Мета роботи – одержання, дослідження якісного складу та вмісту сапонінів у екстрактах рідких трави підмаренника чіпкого (Galium aparine L.) та підмаренника справжнього (Galium verum L.).Матеріали та методи. Екстракти трави підмаренника чіпкого та підмаренника справжнього отримували шляхом триразової екстракції сировини 96 % спиртом етиловим при нагріванні з подальшим концентруванням об’єднаних витяжок до співвідношення сировина : готовий продукт 1:1. Сапоніни досліджували методом високоефективної рідинної хроматографії (ВЕРХ).Результати та їх обговорення. В результаті хроматографічного дослідження екстрактів трави підмаренника чіпкого та підмаренника справжнього виявлено, що в них містяться 6 та 7 сапонінів відповідно. Сполуки відносяться до урсанового (урсолова, еускафова, торментинова кислоти та уваол), олеананового (олеанолова кислота) та лупанового (бетулін та лупеол) типу. В екстракті з трави підмаренника чіпкого в цілому переважають сполуки урсанового ряду (50 мг/мл), домінуючою сполукою є еускафова кислота (3,34 мг/мл); у екстракті з трави підмаренника справжнього – сапоніни лупанового ряду (2,50 мг/мл), домінуючою сполукою є лупеол (1,60 мг/мл).Висновки. Отримані результати свідчать про перспективність подальшого поглибленого дослідження хімічного складу та біологічної активності екстрактів рідких з трави підмаренника чіпкого та підмаренника справжнього.
- Published
- 2018
46. A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR)
- Author
-
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, Fangxing, and Marotzke, J.
- Abstract
The MPI‐ESM1.2 is the latest version of the Max Planck Institute Earth System Model and is the baseline for the Coupled Model Intercomparison Project Phase 6 and current seasonal and decadal climate predictions. This paper evaluates a coupled higher‐resolution version (MPI‐ESM1.2‐HR) in comparison with its lower‐resolved version (MPI‐ESM1.2‐LR). We focus on basic oceanic and atmospheric mean states and selected modes of variability, the El Niño/Southern Oscillation and the North Atlantic Oscillation. The increase in atmospheric resolution in MPI‐ESM1.2‐HR reduces the biases of upper‐level zonal wind and atmospheric jet stream position in the northern extratropics. This results in a decrease of the storm track bias over the northern North Atlantic, for both winter and summer season. The blocking frequency over the European region is improved in summer, and North Atlantic Oscillation and related storm track variations improve in winter. Stable Atlantic meridional overturning circulations are found with magnitudes of ~16 Sv for MPI‐ESM1.2‐HR and ~20 Sv for MPI‐ESM1.2‐LR at 26°N. A strong sea surface temperature bias of ~5°C along with a too zonal North Atlantic current is present in both versions. The sea surface temperature bias in the eastern tropical Atlantic is reduced by ~1°C due to higher‐resolved orography in MPI‐ESM‐HR, and the region of the cold‐tongue bias is reduced in the tropical Pacific. MPI‐ESM1.2‐HR has a well‐balanced radiation budget and its climate sensitivity is explicitly tuned to 3 K. Although the obtained reductions in long‐standing biases are modest, the improvements in atmospheric dynamics make this model well suited for prediction and impact studies.
- Published
- 2018
47. Global carbon budget 2018 [Data Paper]
- Author
-
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., Gkritzalis, T., Goll, D. S., Harris, I., Haverd, V., Hoffman, F. M., Hoppema, M., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Johannessen, T., Jones, C. D., Kato, E., Keeling, R. F., Goldewijk, K. K., Landschutzer, P., Lefèvre, Nathalie, Lienert, S., Liu, Z., Lombardozzi, D., Metzl, N., Munro, D. R., Nabel, Jems, Nakaoka, S., Neill, C., Olsen, A., Ono, T., Patra, P., Peregon, A., Peters, W., Peylin, P., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rocher, M., Rodenbeck, C., Schuster, U., Schwinger, J., Seferian, R., Skjelvan, I., Steinhoff, T., Sutton, A., Tans, P. P., Tian, H. Q., Tilbrook, B., Tubiello, F. N., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., Wright, R., Zaehle, S., and Zheng, B.
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FF) are based on energy statistics and cement production data, while emissions from land use and land-use change (E-LUC), mainly deforestation, are based on land use and land -use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2008-2017), E-FF was 9.4 +/- 0.5 GtC yr(-1), E-LUC 1.5 +/- 0.7 GtC yr(-1), G(ATM) 4.7 +/- 0.02 GtC yr(-1), S-OCEAN 2.4 +/- 0.5 GtC yr(-1), and S-LAND 3.2 +/- 0.8 GtC yr(-1), with a budget imbalance B-IM of 0.5 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in E-FF was about 1.6 % and emissions increased to 9.9 +/- 0.5 GtC yr(-1). Also for 2017, E-LUC was 1.4 +/- 0.7 GtC yr(-1), G(ATM) was 4.6 +/- 0.2 GtC yr(-1), S-OCEAN was 2.5 +/- 0.5 GtC yr(-1), and S-LAND was 3.8 +/- 0.8 GtC yr(-1), with a B-IM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0 +/- 0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6-9 months indicate a renewed growth in E-FF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959-2017, but discrepancies of up to 1 GtC yr(-1) persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land -use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from
- Published
- 2018
48. Predictable Variations of the Carbon Sinks and Atmospheric CO2 Growth in a Multi‐Model Framework.
- Author
-
Ilyina, T., Li, H., Spring, A., Müller, W. A., Bopp, L., Chikamoto, M. O., Danabasoglu, G., Dobrynin, M., Dunne, J., Fransner, F., Friedlingstein, P., Lee, W., Lovenduski, N. S., Merryfield, W.J., Mignot, J., Park, J.Y., Séférian, R., Sospedra‐Alfonso, R., Watanabe, M., and Yeager, S.
- Subjects
- *
CARBON cycle , *ATMOSPHERIC carbon dioxide , *GLOBAL warming , *LEAD time (Supply chain management) , *CARBON analysis - Abstract
Inter‐annual to decadal variability in the strength of the land and ocean carbon sinks impede accurate predictions of year‐to‐year atmospheric carbon dioxide (CO2) growth rate. Such information is crucial to verify the effectiveness of fossil fuel emissions reduction measures. Using a multi‐model framework comprising prediction systems initialized by the observed state of the physical climate, we find a predictive skill for the global ocean carbon sink of up to 6 years for some models. Longer regional predictability horizons are found across single models. On land, a predictive skill of up to 2 years is primarily maintained in the tropics and extra‐tropics enabled by the initialization of the physical climate. We further show that anomalies of atmospheric CO2 growth rate inferred from natural variations of the land and ocean carbon sinks are predictable at lead time of 2 years and the skill is limited by the land carbon sink predictability horizon. Plain Language Summary: Variations of the natural land and ocean carbon sinks in response to climate variability strongly regulate year‐to‐year variations in the growth rate of atmospheric carbon dioxide (CO2). Information on the near‐term evolution of the carbon sinks and CO2 in the atmosphere is necessary to understand where the anthropogenic carbon would go in response to emission reduction efforts addressing global warming mitigation. Predictions of this near‐term evolution would thus assist policy‐relevant analysis and carbon management activities. Here we use a set of prediction systems based on Earth system models to establish predictive skills of the ocean and land carbon sinks and to infer predictability of atmospheric CO2 growth rate. We show predictability horizons of up to 6 years for some models for the globally integrated ocean carbon sink, with even higher regional predictive skill. Variations of the land carbon sink are predictable up to 2 years and limit predictability of changes in atmospheric CO2 growth rate at lead time of 2 years. Our study thereby demonstrates an emerging capacity of the initialized simulations for predicting the global carbon cycle and the planet's breath maintained by variations of atmospheric CO2. Key Points: Predictive skill of the global ocean carbon sink due to initialization is up to 6 years for some models, with longer regional predictability in single modelsPredictive skill due to initialization for the land carbon sink of up to 2 years is primarily maintained in the tropics and extra‐tropicsAnomalies of atmospheric CO2 growth rate are predictable up to 2 years and are limited by the land carbon sink predictability horizon [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
49. Дослідження рідких екстрактів з трави підмаренника справжнього (Galium verum L.) та їх антибактеріальної активності
- Author
-
Shynkovenko, I. L., Ilyina, T. V., Goryacha, O. V., Kovalyova, A. M., Osolodchenko, T. M., and Komisarenko, A. M.
- Subjects
Galium verum L ,fluid extracts ,antibacterial activity ,подмаренник настоящий ,экстракты жидкие ,антибактериальная активность ,UDC 615.281/.282:582.972.3 ,підмаренник справжній ,екстракти рідкі ,антибактеріальна активність ,УДК 615.281/.282:582.972.3 - Abstract
Aim. To obtain and study the qualitative composition and the content of the main groups of biologically active substances (BAS) of fluid extracts (FEs) of Galium verum L. herb and to assess their antibacterial activity.Materials and methods. FEs of Galium verum L. herb were obtained by three-fold water extraction or ethanol (20 %, 60 %, 96 %) extraction of the raw material when heating, followed by the concentration of the combined extracts. Phenolic compounds of FEs were studied by the methods of paper and thin-layer chromatography, and spectrophotometry. The content of polysaccharides was determined gravimetrically. The antibacterial activity of FEs was determined in vitro by the agar diffusion method.Results and discussion. The chromatographic study of FEs of Galium verum L. herb revealed the presence of chlorogenic acid and rutin in all FEs, the fluid 96 % ethanol extract contains chlorogenic acid, cyanoside, quercetin and rutin. Hydroxycinnamic acids, flavonoids and the amount of phenolic compounds were quantified in all extracts, and polysaccharides were determined in the aqueous extract and 20 % ethanol extract. When studying the antimicrobial activity of FEs it has been found that the fluid 96 % ethanol extract exhibits the highest activity. Bacillus subtilis was the most susceptible to all the extracts under study. Proteus vulgaris showed insignificant sensitivity to the test concentration of fluid extracts obtained with water and 60 % ethanol. The rest of the microorganism test strains used were sufficiently sensitive to the FEs under study.Conclusions. The results obtained indicate the prospects of further in-depth study of the antimicrobial activity of fluid extracts of Galium verum L. herb in order to develop antibacterial agents on their basis., Цель работы – получение, исследование качественного состава и содержания основных групп биологически активных соединений (БАС) экстрактов жидких (ЭЖ) травы подмаренника настоящего и изучение их антибактериальной активности.Материалы и методы. ЭЖ травы подмаренника настоящего полученны путем трехкратной экстракции сырья водой или 20 %, 60 %, 96 % этанолом при нагревании с последующим концентрированием объединенных извлечений. Фенольные соединения ЭЖ исследовали методами бумажной и тонкослойной хроматографии и спектрофотометрии. Содержание полисахаридов определяли гравиметрическим методом. Антибактериальную активность ЭЖ устанавливали методом «колодцев» in vitro.Результаты и их обсуждение. При хроматографическом изучении ЭЖ травы подмаренника настоящего установлено, что все ЭЖ содержат хлорогеновую кислоту и рутин, ЭЖ с использованием в качестве экстрагента 96 % этанола содержит хлорогеновую кислоту, цинарозид, кверцетин и рутин. Установлено содержание гидроксикоричных кислот, флавоноидов и суммы фенольных соединений во всех экстрактах, содержание полисахаридов – в водном и спиртовом (20 % этанол) экстрактах. При изучении антимикробной активности ЭЖ установлено, что наиболее активным является экстракт, полученный с использованием 96 % этанола. Наиболее чувствительным ко всем исследованным экстрактам оказался Bacillus subtilis. Незначительную чувствительность к испытуемой концентрации ЭЖ, полученных с использованием воды и 60 % этанола, показал Proteus vulgaris. Остальные использованные тест-штаммы микроорганизмов оказались достаточно чувствительными к исследованным ЭЖ.Выводы. Полученные результаты свидетельствуют о перспективности дальнейшего углубленного изучения антимикробной активности жидких экстрактов из травы подмаренника настоящего с целью создания на их основе антибактериальных средств., Мета роботи – одержання, дослідження якісного складу та вмісту основних груп біологічно активних речовин (БАР) екстрактів рідких (ЕР) трави підмаренника справжнього і вивчення їх антибактеріальної активності.Матеріали та методи. ЕР трави підмаренника справжнього отримані шляхом триразової екстракції сировини водою або 20 %, 60 %, 96 % етанолом при нагріванні з подальшим концентруванням об’єднаних витяжок. Фенольні сполуки ЕР досліджували методами паперової та тонкошарової хроматографії і спектрофотометрії. Вміст полісахаридів визначали гравіметричним методом. Антибактеріальну активність ЕР встановлювали методом «колодязів» in vitro.Результати та їх обговорення. При хроматографічному дослідженні ЕР трави підмаренника справжнього встановлено, що в усіх ЕР міститься хлорогенова кислота та рутин; ЕР з використанням як екстрагенту 96 % етанолу містить хлорогенову кислоту, цинарозид, кверцетин і рутин. Визначено вміст гідроксикоричних кислот, флавоноїдів та суми фенольних сполук в усіх екстрактах, вміст полісахаридів – у водному та спиртовому (20 %) екстрактах. При дослідженні антимікробної активності РЕ встановлено, що найбільшу активність проявляє екстракт, одержаний з використанням 96 % етанолу. Найбільш чутливим до всіх досліджуваних екстрактів виявився Bacillus subtilis. Незначну чутливість до випробовуваної концентрації ЕР, отриманих за допомогою води та 60 % етанолу, показав Proteus vulgaris. Решта використаних тест-штамів мікроорганізмів виявилась достатньо чутливою до досліджуваних ЕР.Висновки. Отримані результати свідчать про перспективність подальшого поглибленого дослідження антимікробної активності ЕР з трави підмаренника справжнього з метою створення на їх основі антибактеріальних засобів.
- Published
- 2017
50. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5
- Author
-
Giorgetta, M., https://orcid.org/0000-0002-4278-1963, Jungclaus, J., https://orcid.org/0000-0002-3849-4339, Reick, C., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., https://orcid.org/0000-0001-6420-3198, Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., https://orcid.org/0000-0003-4069-5444, Haak, H., Hollweg, H., Ilyina, T., https://orcid.org/0000-0002-3475-4842, Kinne, S., Kornblueh, L., Matei, D., https://orcid.org/0000-0002-3735-8802, Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., https://orcid.org/0000-0001-7977-5041, Schnur, R., https://orcid.org/0000-0002-7380-8313, Segschneider, J., Six, K., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K., Claussen, M., https://orcid.org/0000-0001-6225-5488, Marotzke, J., https://orcid.org/0000-0001-9857-9900, Stevens, B., and https://orcid.org/0000-0003-3795-0475
- Abstract
The new Max Planck Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from 1850 to 2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency towards a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K-1 if the CO2 concentration is constant, or as small as 1.6% K-1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.