32 results on '"De la Salle, Mikael"'
Search Results
2. Cayley graphs with few automorphisms
- Author
-
Leemann, Paul-Henry and de la Salle, Mikael
- Published
- 2021
- Full Text
- View/download PDF
3. On norms taking integer values on the integer lattice
- Author
-
de la Salle, Mikael
- Published
- 2016
- Full Text
- View/download PDF
4. Actions of higher rank groups on uniformly convex Banach spaces
- Author
-
de Laat, Tim and de la Salle, Mikael
- Subjects
Mathematics - Functional Analysis ,FOS: Mathematics ,Group Theory (math.GR) ,Mathematics - Group Theory ,Functional Analysis (math.FA) - Abstract
We prove that all isometric actions of higher rank simple Lie groups and their lattices on arbitrary uniformly convex Banach spaces have a fixed point. This vastly generalises a recent breakthrough of Oppenheim. Combined with earlier work of Lafforgue and of Liao on strong Banach property (T) for non-Archimedean higher rank simple groups, this confirms a long-standing conjecture of Bader, Furman, Gelander and Monod. As a consequence, we deduce that sequences of Cayley graphs of finite quotients of a higher rank lattice are super-expanders., 30 pages ; minor changes in v2
- Published
- 2023
5. SCHUR AND FOURIER MULTIPLIERS OF AN AMENABLE GROUP ACTING ON NON-COMMUTATIVE L p -SPACES
- Author
-
CASPERS, MARTIJN and DE LA SALLE, MIKAEL
- Published
- 2015
6. Extensions of amenable groups by recurrent groupoids
- Author
-
Juschenko, Kate, Nekrashevych, Volodymyr, and de la Salle, Mikael
- Published
- 2016
- Full Text
- View/download PDF
7. Spectral gap and stability for groups and non-local games
- Author
-
de la Salle, Mikael and de la salle, mikael
- Subjects
Mathematics - Operator Algebras ,FOS: Mathematics ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,Operator Algebras (math.OA) ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] - Abstract
The word stable is used to describe a situation when mathematical objects that almost satisfy an equation are close to objects satisfying it exactly. We study operator-algebraic forms of stability for unitary representations of groups and quantum synchronous strategies for non-local games. We observe in particular that simple spectral gap estimates can lead to strong quantitative forms of stability. For example, we prove that the direct product of two (flexibly) Hilbert-Schmidt stable groups is again (flexibly) Hilbert-Schmidt stable, provided that one of them has Kazhdan's property (T). We also provide a simple form and simple analysis of a non-local game with few questions, with the property that synchronous strategies with large value are close to perfect strategies involving large Pauli matrices. This simplifies one of the steps (the question reduction) in the recent announced resolution of Connes' embedding problem by Ji, Natarajan, Vidick, Wright and Yuen.
- Published
- 2022
8. Isometric actions on L p -spaces: dependence on the value of p.
- Author
-
Marrakchi, Amine and de la Salle, Mikael
- Subjects
- *
COMPACT groups , *STABILITY constants , *COCYCLES , *BANACH spaces , *VON Neumann algebras - Abstract
Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally compact group $G$ , there exists a critical constant $p_G \in [0,\infty ]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0) with unbounded orbits if and only if $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and $p>2$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
9. Analysis on simple Lie groups and lattices
- Author
-
de la Salle, Mikael
- Subjects
Mathematics - Functional Analysis ,Mathematics::K-Theory and Homology ,Mathematics::Operator Algebras ,FOS: Mathematics ,Mathematics - Operator Algebras ,Group Theory (math.GR) ,Representation Theory (math.RT) ,Operator Algebras (math.OA) ,Mathematics - Group Theory ,Mathematics - Representation Theory ,Functional Analysis (math.FA) - Abstract
We present a simple tool to perform analysis with groups such as SL(n,R) and SL(n,Z), that has been introduced by Vincent Lafforgue in his study of non-unitary representations, in connection with the Baum-Connes conjecture and strong property (T). It has been later applied in various contexts: operator algebras, Fourier analysis, geometry of Banach spaces or dynamics. The idea is to first restrict to compact subgroups and then exploit how they sit inside the whole group., Prepared for the proceedings of the ICM2022 (20 pages)
- Published
- 2022
10. Most rigid representation and Cayley index of finitely generated groups
- Author
-
Leemann, Paul-Henry, de La Salle, Mikael, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016), ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019), de la salle, mikael, Community of mathematics and fundamental computer science in Lyon - - MILYON2010 - ANR-10-LABX-0070 - LABX - VALID, Actions de Groupes, Isométries, Rigidité et Aléa - - AGIRA2016 - ANR-16-CE40-0022 - AAPG2016 - VALID, and Analyse non commutative sur les groupes et les groupes quantiques - - ANCG2019 - ANR-19-CE40-0002 - AAPG2019 - VALID
- Subjects
Applied Mathematics ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,Group Theory (math.GR) ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,Theoretical Computer Science ,Mathematics::Group Theory ,Computational Theory and Mathematics ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,Geometry and Topology ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Mathematics - Group Theory ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] - Abstract
If $G$ is a group and $S$ a generating set, $G$ canonically embeds into the automorphism group of its Cayley graph and it is natural to try to minimize, over all generating sets, the index of this inclusion. This infimum is called the Cayley index of the group. In a recent series of works, we have characterized the infinite finitely generated groups with Cayley index $1$. We complement this characterization by showing that the Cayley index is $2$ in the remaining cases and is attained for a finite generating set., 9 pages
- Published
- 2021
11. A duality operators/Banach spaces
- Author
-
De la Salle, Mikael, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016), ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), de la salle, mikael, Actions de Groupes, Isométries, Rigidité et Aléa - - AGIRA2016 - ANR-16-CE40-0022 - AAPG2016 - VALID, Analyse non commutative sur les groupes et les groupes quantiques - - ANCG2019 - ANR-19-CE40-0002 - AAPG2019 - VALID, Community of mathematics and fundamental computer science in Lyon - - MILYON2010 - ANR-10-LABX-0070 - LABX - VALID, and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Functional Analysis ,Mathematics::Functional Analysis ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,FOS: Mathematics ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,Functional Analysis (math.FA) ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] - Abstract
Given a set $B$ of operators between subspaces of $L_p$ spaces, we characterize the operators between subspaces of $L_p$ spaces that remain bounded on the $X$-valued $L_p$ space for every Banach space on which elements of the original class $B$ are bounded. This is a form of the bipolar theorem for a duality between the class of Banach spaces and the class of operators between subspaces of $L_p$ spaces, essentially introduced by Pisier. The methods we introduce allow us to recover also the other direction --characterizing the bipolar of a set of Banach spaces--, which had been obtained by Hernandez in 1983., Comment: 34 pages. Old project, already announced at several occasions in 2016, and that took a long time to be completed. Comments welcome v2: 37 pages. Section 5 added on the duality between Banach spaces and operators on full Lp spaces. A few references added
- Published
- 2021
12. COMPLETE ISOMETRIES BETWEEN SUBSPACES OF NONCOMMUTATIVE L p -SPACES
- Author
-
DE LA SALLE, MIKAEL
- Published
- 2010
13. Strong Haagerup inequalities with operator coefficients
- Author
-
de la Salle, Mikael
- Published
- 2009
- Full Text
- View/download PDF
14. Strong Property (T), weak amenability and $\ell^p$-cohomology in $\tilde{A}_2$-buildings
- Author
-
Lécureux, Jean, de la Salle, Mikael, Witzel, Stefan, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Justus-Liebig-Universität Gießen (JLU), ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), and Justus-Liebig-Universität Gießen = Justus Liebig University (JLU)
- Subjects
20F65, 51E24 ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,Mathematics - Operator Algebras ,FOS: Mathematics ,Group Theory (math.GR) ,Operator Algebras (math.OA) ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Mathematics - Group Theory ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] - Abstract
We prove that cocompact (and more generally: undistorted) lattices on $\tilde{A}_2$-buildings satisfy Lafforgue's strong property (T), thus exhibiting the first examples that are not related to algebraic groups over local fields. Our methods also give two further results. First, we show that the first $\ell^p$-cohomology of an $\tilde{A}_2$-building vanishes for any finite $p$. Second, we show that the non-commutative $L^p$-space for $p$ not in $[\frac 4 3,4]$ and the reduced $C^*$-algebra associated to an $\tilde{A}_2$-lattice do not have the operator space approximation property and, consequently, that the lattice is not weakly amenable., Comment: v1: 68 pages, 6 figures; v2: 79 pages, many improvements in the presentation. To appear in Ann. Sci. \'Ecole Norm. Sup
- Published
- 2020
15. Fourier multipliers in $\mathrm{SL}_n(\mathbf{R})$
- Author
-
Parcet, Javier, Ricard, ��ric, and de la Salle, Mikael
- Subjects
Mathematics - Functional Analysis ,FOS: Mathematics ,Mathematics - Operator Algebras ,Group Theory (math.GR) ,Operator Algebras (math.OA) ,Mathematics - Group Theory ,Functional Analysis (math.FA) - Abstract
We establish precise regularity conditions for $L_p$-boundedness of Fourier multipliers in the group algebra of $SL_n(\mathbf{R})$. Our main result is inspired by H��rmander-Mikhlin criterion from classical harmonic analysis, although it is substantially and necessarily different. Locally, we get sharp growth rates of Lie derivatives around the singularity and nearly optimal regularity order. The asymptotics also match Mikhlin formula for a exponentially growing weight with respect to the word length. Additional decay comes imposed by this growth and Mikhlin condition for high order terms. Lafforgue/de la Salle's rigidity theorem fits here. The proof includes a new relation between Fourier and Schur $L_p$-multipliers for nonamenable groups. By transference, matters are reduced to a rather nontrivial $RC_p$-inequality for $SL_n(\mathbf{R})$-twisted forms of Riesz transforms associated to fractional laplacians. Our second result gives a new and much stronger rigidity theorem for radial multipliers in $SL_n(\mathbf{R})$. More precisely, additional regularity and Mikhlin type conditions are proved to be necessary up to an order $\sim |\frac12 - \frac1p| (n-1)$ for large enough $n$ in terms of $p$. Locally, necessary and sufficient growth rates match up to that order. Asymptotically, extra decay for the symbol and its derivatives imposes more accurate and additional rigidity in a wider range of $L_p$-spaces. This rigidity increases with the rank, so we can construct radial generating functions satisfying our H��rmander-Mikhlin sufficient conditions in rank $n$ and failing the rigidity conditions for ranks $m >> n$. We also prove automatic regularity and rigidity estimates for first and higher order derivatives of $\mathrm{K}$-biinvariant multipliers in the rank 1 groups $SO(n,1)$., To appear in Duke Math. J
- Published
- 2018
16. Rigidity and malleability aspects of groups and their representations
- Author
-
de La Salle, Mikael and de la salle, mikael
- Subjects
algèbres de von Neumann de groupes ,Banach space geometry ,Property (T) ,Amenable groups ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,propriété (T) renforcée banachique ,géométrie des espaces de Banach ,moyennabilité extensive ,graphes transitifs ,Propriété (T) ,Extensive amenability ,Group von Neumann algebras ,groupes moyennables ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Transitive graphs ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] - Abstract
La question générale étudiée dans ce mémoire d’habilitation est de comprendre dans quelle mesure certains objets mathématiques associés à un groupe peuvent être déformés ou approchés non trivialement. On parle de malléabilité lorsque c'est possible et de rigidité sinon. En fonctions des chapitres, ces objets seront des représentations sur des espaces de Banach, des algèbres d'opérateurs, des espaces Lp non commutatifs ou des graphes de Cayley. Les trois premiers chapitres traitent de rigidité pour les groupes algébriques de rang supérieur dans un cadre linéaire, et plus précisément dans un cadre d'algèbres d'opérateurs, d'analyse harmonique et de représentations de groupes sur des espaces de Banach. On y démontre que les algèbres d’opérateurs associées aux réseaux en rang supérieur ont de très mauvaises propriétés d’approximation, de plus en plus lorque le rang croît. On prouve aussi une forme renforcée de la propriété (T) pour les actions sur les espaces de Banach. Le quatrième chapitre ne porte que sur l'aspect malléabilité. C'est une présentation des mes travaux sur la moyennabilité des groupes discrets et sur ce qu'on appelle les actions extensivement moyennables. Le cinquième et dernier chapitre porte sur mes travaux sur les aspects de malléabilité et de rigidité pour les graphes de Cayley de groupes de présentation finie, et plus généralement pour les graphes transitifs simplement connexes à grande échelle. J'y étudie l'espace topologique de tous les tels graphes, en essayant de comprendre les points isolés (les graphes ``rigides'') et les points non isolés (les graphes ``malléables'').
- Published
- 2016
17. Aspects de rigidité et de malléabilité pour les groupes et leurs représentations
- Author
-
de La Salle, Mikael, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), Ecole Normale Supérieure de Lyon, and Georges Skandalis
- Subjects
algèbres de von Neumann de groupes ,Banach space geometry ,Property (T) ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,Amenable groups ,propriété (T) renforcée banachique ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,géométrie des espaces de Banach ,moyennabilité extensive ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,graphes transitifs ,Propriété (T) ,Extensive amenability ,Group von Neumann algebras ,groupes moyennables ,Transitive graphs - Abstract
La question générale étudiée dans ce mémoire d’habilitation est de comprendre dans quelle mesure certains objets mathématiques associés à un groupe peuvent être déformés ou approchés non trivialement. On parle de malléabilité lorsque c'est possible et de rigidité sinon. En fonctions des chapitres, ces objets seront des représentations sur des espaces de Banach, des algèbres d'opérateurs, des espaces Lp non commutatifs ou des graphes de Cayley. Les trois premiers chapitres traitent de rigidité pour les groupes algébriques de rang supérieur dans un cadre linéaire, et plus précisément dans un cadre d'algèbres d'opérateurs, d'analyse harmonique et de représentations de groupes sur des espaces de Banach. On y démontre que les algèbres d’opérateurs associées aux réseaux en rang supérieur ont de très mauvaises propriétés d’approximation, de plus en plus lorque le rang croît. On prouve aussi une forme renforcée de la propriété (T) pour les actions sur les espaces de Banach. Le quatrième chapitre ne porte que sur l'aspect malléabilité. C'est une présentation des mes travaux sur la moyennabilité des groupes discrets et sur ce qu'on appelle les actions extensivement moyennables. Le cinquième et dernier chapitre porte sur mes travaux sur les aspects de malléabilité et de rigidité pour les graphes de Cayley de groupes de présentation finie, et plus généralement pour les graphes transitifs simplement connexes à grande échelle. J'y étudie l'espace topologique de tous les tels graphes, en essayant de comprendre les points isolés (les graphes ``rigides'') et les points non isolés (les graphes ``malléables'').
- Published
- 2016
18. Strong property (T) for higher rank Lie groups
- Author
-
de Laat, Tim, De la Salle, Mikael, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016), ANR-14-CE25-0004,GAMME,Groupes, Actions, Métriques, Mesures et théorie Ergodique(2014), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] - Abstract
26 pages; International audience; We prove that connected higher rank simple Lie groups have Lafforgue's strong property (T) with respect to a certain class of Banach spaces E10 containing many classical superreflexive spaces and some non-reflexive spaces as well. This generalizes the result of Lafforgue asserting that SL(3,R) has strong property (T) with respect to Hilbert spaces and the more recent result of the second named author asserting that SL(3,R) has strong property (T) with respect to a certain larger class of Banach spaces. For the generalization to higher rank groups, it is sufficient to prove strong property (T) for Sp(2,R) and its universal covering group. As consequences of our main result, it follows that for the Banach spaces X∈E10, connected higher rank simple Lie groups and their lattices have property (FX) of Bader, Furman, Gelander and Monod, and that the expanders contructed from a lattice in a connected higher rank simple Lie group do not admit a coarse embedding into X.
- Published
- 2015
- Full Text
- View/download PDF
19. Characterizing a vertex-transitive graph by a large ball.
- Author
-
de la Salle, Mikael and Tessera, Romain
- Subjects
- *
CAYLEY graphs , *NILPOTENT groups , *SYMMETRIC spaces , *RIEMANNIAN manifolds , *LIE groups , *NILPOTENT Lie groups - Abstract
It is well known that a complete Riemannian manifold M which is locally isometric to a symmetric space is covered by a symmetric space. Here, we prove that a discrete version of this property (called local to global rigidity) holds for a large class of vertex-transitive graphs, including Cayley graphs of torsion-free lattices in simple Lie groups, and Cayley graphs of torsion-free virtually nilpotent groups. By contrast, we exhibit various examples of Cayley graphs of finitely presented groups (for example, SL4(Z)) which fail to have this property, answering a question of Benjamini and Georgakopoulos. Answering a question of Cornulier, we also construct a continuum of pairwise nonisometric large-scale simply connected locally finite vertex-transitive graphs. This question was motivated by the fact that large-scale simply connected Cayley graphs are precisely Cayley graphs of finitely presented groups and therefore have countably many isometric classes. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
20. A local characterization of Kazhdan projections and applications.
- Author
-
de la Salle, Mikael
- Published
- 2019
- Full Text
- View/download PDF
21. Approximation properties for noncommutative Lp-spaces of high rank lattices and nonembeddability of expanders.
- Author
-
de Laat, Tim and de la Salle, Mikael
- Subjects
- *
NONCOMMUTATIVE function spaces , *BANACH spaces , *HILBERT space , *LIE groups , *LATTICE theory - Abstract
This article contains two rigidity type results for SL(n,Z) for large n that share the same proof. Firstly, we prove that for every p ∈ [1,∞] different from 2, the noncommutative Lp-space associated with SL(n,Z) does not have the completely bounded approximation property for sufficiently large n depending on p. The second result concerns the coarse embeddability of expander families constructed from SL(n,Z). Let X be a Banach space and suppose that there exist β < 1/2 and C > 0 such that the Banach-Mazur distance to a Hilbert space of all k-dimensional subspaces of X is bounded above by Ckβ. Then the expander family constructed from SL(n,Z) does not coarsely embed into X for sufficiently large n depending on X. More generally, we prove that both results hold for lattices in connected simple real Lie groups with sufficiently high real rank. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
22. Extensive amenability and an application to interval exchanges.
- Author
-
JUSCHENKO, KATE, MATTE BON, NICOLÁS, MONOD, NICOLAS, and DE LA SALLE, MIKAEL
- Abstract
Extensive amenability is a property of group actions which has recently been used as a tool to prove amenability of groups. We study this property and prove that it is preserved under a very general construction of semidirect products. As an application, we establish the amenability of all subgroups of the group IET of interval exchange transformations that have angular components of rational rank less than or equal to two. In addition, we obtain a reformulation of extensive amenability in terms of inverted orbits and use it to present a purely probabilistic proof that recurrent actions are extensively amenable. Finally, we study the triviality of the Poisson boundary for random walks on IET and show that there are subgroups G < IET admitting no finitely supported measure with trivial boundary. [ABSTRACT FROM PUBLISHER]
- Published
- 2018
- Full Text
- View/download PDF
23. A shorter proof of a result by Potapov and Sukochev on Lipschtiz functions on $S^p$
- Author
-
de la Salle, Mikael
- Subjects
Mathematics - Functional Analysis ,47B10 ,47A60 ,FOS: Mathematics ,Mathematics - Operator Algebras ,Mathematics::Metric Geometry ,Operator Algebras (math.OA) ,Functional Analysis (math.FA) - Abstract
In this short note we give a short proof of a recent result by Potapov and Sukochev (arXiv:0904.4095v1), stating that a Lipschitz function on the real line remains Lipschitz on the (self-adjoint part of) non-commutative $L_p$ spaces with $1, Comment: 3 pages
- Published
- 2009
24. COMPLETE BOUNDEDNESS OF HEAT SEMIGROUPS ON THE VON NEUMANN ALGEBRA OF HYPERBOLIC GROUPS.
- Author
-
TAO MEI and DE LA SALLE, MIKAEL
- Subjects
- *
MATHEMATICAL bounds , *VON Neumann algebras , *HYPERBOLIC groups , *MULTIPLIERS (Mathematical analysis) , *MATHEMATICAL analysis - Abstract
We prove that λg → e-t|g|r λg defines a multiplier on the von Neuman algebra of hyperbolic groups with a complete bound = r, for any 0 < t < ∞, 1 < r < ∞. In the proof we observe that a construction of Ozawa allows us to characterize the radial multipliers that are bounded on every hyperbolic graph, partially generalizing results of Haagerup-Steenstrup-Szwarc and Wysocza'nski. Our argument is also based on the work of Peller. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
25. COMBINATORICS OF TIGHT GEODESICS AND STABLE LENGTHS.
- Author
-
CASPERS, MARTIJN and DE LA SALLE, MIKAEL
- Subjects
- *
MULTIPLIERS (Mathematical analysis) , *NONCOMMUTATIVE function spaces , *COMPACT groups , *SET theory , *MATHEMATICAL proofs - Abstract
We give an algorithm to compute the stable lengths of pseudo- Anosovs on the curve graph, answering a question of Bowditch. We also give a procedure to compute all invariant tight geodesic axes of pseudo-Anosovs. Along the way we show that there are constants 1 < a1 < a2 such that the minimal upper bound on 'slices' of tight geodesics is bounded below and above by aξ(S)1 and aξ(S)2, where ξ(S) is the complexity of the surface. As a consequence, we give the first computable bounds on the asymptotic dimension of curve graphs and mapping class groups. Our techniques involve a generalization of Masur-Minsky's tight geodesics and a new class of paths on which their tightening procedure works. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
26. Strong property (T) for higher-rank simple Lie groups.
- Author
-
de Laat, Tim and de la Salle, Mikael
- Subjects
LIE algebras ,GROUP theory ,MATHEMATICAL proofs ,TOPOLOGY ,LATTICE theory - Abstract
We prove that connected higher-rank simple Lie groups have Lafforgue's strong property (T) with respect to a certain class of Banach spaces
10 containing many classical superreflexive spaces and some non-reflexive spaces as well. This generalizes the result of Lafforgue asserting that SL(3,R) has strong property (T) with respect to Hilbert spaces and the more recent result of the second-named author asserting that SL(3,R) has strong property (T) with respect to a certain larger class of Banach spaces. For the generalization to higher-rank groups, it is sufficient to prove strong property (T) for Sp(2,R) and its universal covering group. As consequences of our main result, it follows that for X10 , connected higher-rank simple Lie groups and their lattices have property (FX ) of Bader, Furman, Gelander and Monod, and that the expanders constructed from a lattice in a connected higher-rank simple Lie group do not admit a coarse embedding into X. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF
27. Invariant means for the wobbling group.
- Author
-
Juschenko, Kate and de la Salle, Mikael
- Subjects
- *
INVARIANTS (Mathematics) , *METRIC spaces , *GROUP theory , *BIJECTIONS , *ANALYTIC functions , *MATHEMATICAL bounds - Abstract
Given a metric space (X, d), the wobbling group of X is the group of bijections g : X → X satisfying sup x→X d(g(x), x) < ∞. We study algebraic and analytic properties of W(X) in relation with the metric space structure of X, such as amenability of the action of the lamplighter group ⊕X Z/2Z...W(X) on ⊕X Z/2Z and property (T). [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
28. Cayley graphs with few automorphisms: the case of infinite groups
- Author
-
Paul-Henry Leemann, Mikael de la Salle, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS), ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016), ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019), de la salle, mikael, Community of mathematics and fundamental computer science in Lyon - - MILYON2010 - ANR-10-LABX-0070 - LABX - VALID, Actions de Groupes, Isométries, Rigidité et Aléa - - AGIRA2016 - ANR-16-CE40-0022 - AAPG2016 - VALID, Analyse non commutative sur les groupes et les groupes quantiques - - ANCG2019 - ANR-19-CE40-0002 - AAPG2019 - VALID, and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,Ocean Engineering ,Group Theory (math.GR) ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,05E18, 05E30, 20B27, 05C25, 05C63 ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,Mathematics::Group Theory ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Mathematics - Group Theory ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] - Abstract
We characterize the finitely generated groups that admit a Cayley graph whose only automorphisms are the translations, confirming a conjecture by Watkins from 1976. The proof relies on random walk techniques. As a consequence, every finitely generated group admits a Cayley graph with countable automorphism group. We also treat the case of directed graphs., v1: 17 pages v2: 19 pages, improvements in the presentation, Section 6 added. To appear in Annales Henri Lebesgue
- Published
- 2020
29. Banach space actions and $L^2$-spectral gap
- Author
-
Tim De Laat, Mikael De la Salle, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), and de la salle, mikael
- Subjects
Pure mathematics ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,Banach space ,Group Theory (math.GR) ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Space (mathematics) ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,symbols.namesake ,FOS: Mathematics ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] ,Mathematics ,Numerical Analysis ,Cayley graph ,Group (mathematics) ,Applied Mathematics ,Probability (math.PR) ,Spectrum (functional analysis) ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,Hilbert space ,Functional Analysis (math.FA) ,Mathematics - Functional Analysis ,symbols ,Affine transformation ,Finitely generated group ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Mathematics - Group Theory ,Analysis ,Mathematics - Probability - Abstract
��uk proved that if a finitely generated group admits a Cayley graph such that the Laplacian on the links of this Cayley graph has a spectral gap $> \frac{1}{2}$, then the group has property (T), or equivalently, every affine isometric action of the group on a Hilbert space has a fixed point. We prove that the same holds for affine isometric actions of the group on a uniformly curved Banach space (for example an $L^p$-space with $1 < p < \infty$ or an interpolation space between a Hilbert space and an arbitrary Banach space) as soon as the Laplacian on the links has a two-sided spectral gap $>1-\varepsilon$. This criterion applies to random groups in the triangular density model for densities $> \frac{1}{3}$. In this way, we are able to generalize recent results of Dru��u and Mackay to affine isometric actions of random groups on uniformly curved Banach spaces. Also, in the setting of actions on $L^p$-spaces, our results are quantitatively stronger, even in the case $p=2$. This naturally leads to new estimates on the conformal dimension of the boundary of random groups in the triangular model. Additionally, we obtain results on the eigenvalues of the $p$-Laplacian on graphs, and on the spectrum and degree distribution of Erd��s-R��nyi graphs., v2: Major revision; substantial improvements of the main results; 28 pages v3: Minor revision; 29 pages
- Published
- 2017
30. Local-to-global rigidity of Bruhat-Tits buildings
- Author
-
mikael de la Salle, Romain Tessera, de la salle, mikael, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics::Group Theory ,Mathematics - Metric Geometry ,FOS: Mathematics ,Metric Geometry (math.MG) ,Group Theory (math.GR) ,[MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG] ,Mathematics::Representation Theory ,[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] ,Mathematics - Group Theory ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] - Abstract
A vertex-transitive graph X is called local-to-global rigid if there exists R such that every other graph whose balls of radius R are isometric to the balls of radius R in X is covered by X. Let $d\geq 4$. We show that the 1-skeleton of an affine Bruhat-Tits building of type $\widetilde A_{d-1}$ is local-to-global rigid if and only if the underlying field has characteristic 0. For example the Bruhat-Tits building of $SL(d,F_p((t)))$ is not local-to-global rigid, while the Bruhat-Tits building of $SL(d,Q_p)$ is local-to-global rigid., 11 pages
- Published
- 2015
31. Complete isometries between subspaces of noncommutative Lp-spaces
- Author
-
mikael de la Salle, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon), and de la salle, mikael
- Subjects
Mathematics::Operator Algebras ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,Mathematics - Operator Algebras ,Mathematics::General Topology ,46L51, 46L52, 46L07 ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Functional Analysis (math.FA) ,Mathematics - Functional Analysis ,Mathematics::Logic ,Computer Science::Logic in Computer Science ,FOS: Mathematics ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Operator Algebras (math.OA) ,Computer Science::Formal Languages and Automata Theory - Abstract
We prove some noncommutative analogues of a theorem by Plotkin and Rudin about isometries between subspaces of Lp-spaces. Let 0, Comment: 30 pages; revised version of the paper with previous title "Equimeasurabily and isometries in noncommutative Lp-spaces". Changes in the title, presentation and content. Added results on unbounded operators, and applications
- Published
- 2010
32. Operator space valued Hankel matrices
- Author
-
mikael de la Salle, de la salle, mikael, Unité de Mathématiques Pures et Appliquées (UMPA-ENSL), and École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Functional Analysis ,Mathematics::Functional Analysis ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,FOS: Mathematics ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,47B35 ,46L07 ,Functional Analysis (math.FA) - Abstract
If $E$ is an operator space, the non-commutative vector valued $L^p$ spaces $S^p[E]$ have been defined by Pisier for any $1 \leq p \leq \infty$. In this paper a necessary and sufficient condition for a Hankel matrix of the form $(a_{i+j})_{0 \le i,j}$ with $a_k \in E$ to be bounded in $S^p[E]$ is established. This extends previous results of Peller where $E=\C$ or $E=S^p$. The main theorem states that if $1 \leq p < \infty$, $(a_{i+j})_{0 \le i,j}$ is bounded in $S^p[E]$ if and only if there is an analytic function $\phi$ in the vector valued Besov Space $B_p^{1/p}(E)$ such that $a_n = \hat \phi(n)$ for all $n \in \N$. In particular this condition only depends on the Banach space structure of $E$. We also show that the norm of the isomorphism $\phi \mapsto (\hat \phi(i+j))_{i,j}$ grows as $\sqrt p$ as $p \to \infty$, and compute the norm of the natural projection onto the space of Hankel matrices., Comment: 17 pages
- Published
- 2009
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.