Back to Search Start Over

A duality operators/Banach spaces

Authors :
De la Salle, Mikael
Unité de Mathématiques Pures et Appliquées (UMPA-ENSL)
École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE40-0022,AGIRA,Actions de Groupes, Isométries, Rigidité et Aléa(2016)
ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019)
ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
de la salle, mikael
Actions de Groupes, Isométries, Rigidité et Aléa - - AGIRA2016 - ANR-16-CE40-0022 - AAPG2016 - VALID
Analyse non commutative sur les groupes et les groupes quantiques - - ANCG2019 - ANR-19-CE40-0002 - AAPG2019 - VALID
Community of mathematics and fundamental computer science in Lyon - - MILYON2010 - ANR-10-LABX-0070 - LABX - VALID
École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Given a set $B$ of operators between subspaces of $L_p$ spaces, we characterize the operators between subspaces of $L_p$ spaces that remain bounded on the $X$-valued $L_p$ space for every Banach space on which elements of the original class $B$ are bounded. This is a form of the bipolar theorem for a duality between the class of Banach spaces and the class of operators between subspaces of $L_p$ spaces, essentially introduced by Pisier. The methods we introduce allow us to recover also the other direction --characterizing the bipolar of a set of Banach spaces--, which had been obtained by Hernandez in 1983.<br />Comment: 34 pages. Old project, already announced at several occasions in 2016, and that took a long time to be completed. Comments welcome v2: 37 pages. Section 5 added on the duality between Banach spaces and operators on full Lp spaces. A few references added

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....ed9caebc4d00aa9e5cff0f040e76d692