22 results on '"D'Errico, Anna"'
Search Results
2. Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic
- Author
-
Cecchetto, Cinzia, Di Pizio, Antonella, Genovese, Federica, Calcinoni, Orietta, Macchi, Alberto, Dunkel, Andreas, Ohla, Kathrin, Spinelli, Sara, Farruggia, Michael C., Joseph, Paule V., Menini, Anna, Cantone, Elena, Dinnella, Caterina, Cecchini, Maria Paola, D’Errico, Anna, Mucignat-Caretta, Carla, Parma, Valentina, and Dibattista, Michele
- Published
- 2021
- Full Text
- View/download PDF
3. Mere end lugtesans - COVID-19 er associeret med svær påvirkning af lugtesansen, smagssansen og mundfølelsen
- Author
-
Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Rohlfs Domínguez, Paloma, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, Katherine L, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie D C, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E A, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D’Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper H B, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, Abdulrahman, Olagunju, Dalton, Pamela, Yan, Carol H, Voznessenskaya, Vera V, Chen, Jingguo, Sell, Elizabeth A, Walsh-Messinger, Julie, Archer, Nicholas S, Koyama, Sachiko, Deary, Vincent, Roberts, S Craig, Yanık, Hüseyin, Albayrak, Samet, Nováková, Lenka Martinec, Croijmans, Ilja, Mazal, Patricia Portillo, Moein, Shima T, Margulis, Eitan, Mignot, Coralie, Mariño, Sajidxa, Georgiev, Dejan, Kaushik, Pavan K, Malnic, Bettina, Wang, Hong, Seyed-Allaei, Shima, Yoluk, Nur, Razzaghi-Asl, Sara, Justice, Jeb M, Restrepo, Diego, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, Hayes, John E, Indústries Alimentàries, Qualitat i Tecnologia Alimentària, Tecnologia Alimentària, Temple University [Philadelphia], Pennsylvania Commonwealth System of Higher Education (PCSHE), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, Mersin University, The Hebrew University of Jerusalem (HUJ), AbScent, Pennsylvania State University (Penn State), Penn State System, University of California [Irvine] (UC Irvine), University of California (UC), Université Côte d'Azur (UCA), University of Edinburgh, Università degli studi di Bari Aldo Moro = University of Bari Aldo Moro (UNIBA), Central Scientific Instruments Organisation (CSIR), Università degli Studi 'Magna Graecia' di Catanzaro = University of Catanzaro (UMG), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Medizinische Universität Wien = Medical University of Vienna, Groupement scientifique de Biologie et de Medecine Spatiale (GSBMS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES), Tata Institute for Fundamental Research (TIFR), Arizona State University [Tempe] (ASU), Universidad de Extremadura - University of Extremadura (UEX), Università degli Studi di Padova = University of Padua (Unipd), Yale School of Medicine [New Haven, Connecticut] (YSM), San Diego State University (SDSU), Aarhus University [Aarhus], University of Hertfordshire [Hatfield] (UH), Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), Neurosciences Sensorielles Comportement Cognition, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, University of Turku, Aristotle University of Thessaloniki, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Monell Chemical Senses Center, Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Bourgogne Franche-Comté [COMUE] (UBFC), Université de Montréal (UdeM), Wageningen University and Research Centre (WUR), Medical Science University, Sidra Medicine [Doha, Qatar], Institut de Chimie de Nice (ICN), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), University of Southern Queensland (USQ), Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA), DreamAir Llc, Charles University [Prague] (CU), Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), University of Massachusetts System (UMASS), Oregon State University (OSU), Ear Institute, UCL, Lyon Neuroscience Research center, Karunya University, Biruni University, Assi Sette Llaghi Varese, Stanford School of Medicine [Stanford], Stanford Medicine, Stanford University-Stanford University, University of East Anglia [Norwich] (UEA), California Department of Food and Agriculture (CDFA), Unité mixte de recherche interactions plantes-microorganismes, Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Maastricht University [Maastricht], Institute for Biology - Neurobiology, Freie Universität Berlin, Karl-Franzens-Universität Graz, Howard University College of Medicine, Towson University, University of California [San Diego] (UC San Diego), Proteomics, Center for Applied Medical Research (CIMA), Stockholm University, University of Gastronomic Sciences, Iran University of Medical Sciences, Goethe Universität Frankfurt, University of Tennessee, IBM T.J. Watson Research Center, Université libre de Bruxelles (ULB), Guangzhou Medical University, Buenos Aires University and GEOG (Grupo de Estudio de Olfato y Gusto), Sultan Qaboos University (SQU), Federal University of Technology of Akure (FUTA), A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences [Moscow] (RAS), Hospital of Xi'an Jiaotong University, University of Pennsylvania, University of Dayton, CSIRO Agriculture and Food (CSIRO), Indiana University [Bloomington], Indiana University System, University of Northumbria at Newcastle [United Kingdom], University of Stirling, Middle East Technical University [Ankara] (METU), Utrecht University [Utrecht], Instituto Universitario del Hospital Italiano [Buenos Aires, Argentina], Institute for Research in Fundamental Sciences [Tehran] (IPM), Hebrew University of Jerusalem, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Terrazas del Club Hipico, University Medical Centre Ljubljana [Ljubljana, Slovenia] (UMCL), Tata Institute of Fundamental Research [Bangalore], Universidade de São Paulo = University of São Paulo (USP), University of Florida [Gainesville] (UF), University of Colorado Anschutz [Aurora], Center for Smell and Taste, Department of Food Science, Pennsylvania State University., Julien, Sabine, Tıp Fakültesi, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Department of Food and Nutrition, Senses and Food, Research Center Jülich, University of California [Irvine] (UCI), University of California, Università degli studi di Bari Aldo Moro (UNIBA), Università degli Studi 'Magna Graecia' di Catanzaro [Catanzaro, Italie] (UMG), University of Extremadura, University of Padova, Yale University School of Medicine, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, University of Helsinki, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Institute of Agrifood Research and Technology (IRTA), Universita degli Studi di Padova, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Karl-Franzens-Universität [Graz, Autriche], University of California San Diego Health, University of Brussels, University of Pennsylvania [Philadelphia], Tata Institute of Fundamental Research, University of São Paulo (USP), UCL - SSS/IONS - Institute of NeuroScience, FSE Campus Venlo, and RS: FSE UCV
- Subjects
Male ,Taste ,Physiology ,Smagstab ,Audiology ,AcademicSubjects/SCI01180 ,Settore BIO/09 - Fisiologia ,Behavioral Neuroscience ,chemistry.chemical_compound ,Olfaction Disorders ,Taste Disorders ,0302 clinical medicine ,RATINGS ,Hyposmia ,Surveys and Questionnaires ,CHEMOSENSITIVITY ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Viral ,PALADAR ,030223 otorhinolaryngology ,Sensory Science and Eating Behaviour ,media_common ,TASTE ,US NATIONAL-HEALTH ,[SDV.IDA] Life Sciences [q-bio]/Food engineering ,Middle Aged ,Biological Sciences ,16. Peace & justice ,Sensory Systems ,3. Good health ,Smell ,GCCR Group Author ,ddc:540 ,Smell loss ,Female ,Original Article ,medicine.symptom ,Corrigendum ,Coronavirus Infections ,olfaction ,Adult ,somatosensation ,medicine.medical_specialty ,663/664 ,Coronavirus disease 2019 (COVID-19) ,OLFACTORY DISORDERS ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,media_common.quotation_subject ,Pneumonia, Viral ,head and neck surgery ,Aged ,Betacoronavirus ,COVID-19 ,Humans ,Pandemics ,SARS-CoV-2 ,Self Report ,Somatosensory Disorders ,Young Adult ,Anosmia ,Sensory system ,Olfaction ,03 medical and health sciences ,Chemesthesis ,Physiology (medical) ,Perception ,medicine ,Neurology & Neurosurgery ,Behaviour Change and Well-being ,business.industry ,R-PACKAGE ,3112 Neurosciences ,Pneumonia ,Parosmia ,COMPONENT ,Smagssans ,[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition ,Sensoriek en eetgedrag ,chemistry ,Lugtetab ,business ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery ,Lugtesans - Abstract
Correction: Chemical Senses, Volume 46, 2021, bjab050, https://doi.org/10.1093/chemse/bjab050 Published: 08 December 2021 Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
- Published
- 2020
- Full Text
- View/download PDF
4. The best COVID-19 predictor is recent smell loss: a cross-sectional study
- Author
-
Gerkin, Richard, Ohla, Kathrin, Veldhuizen, Maria Geraldine, Joseph, Paule, Kelly, Christine, Bakke, Alyssa, Steele, Kimberley, Pellegrino, Robert, Pepino, Marta, Bouysset, Cédric, Soler, Graciela, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, M. Hakan, D'Errico, Anna, Fischmeister, Florian Ph.S, Bock, María Adelaida, Domínguez, Paloma Paloma, Yanık, Hüseyin, Boesveldt, Sanne, de Groot, Jasper, Dinnella, Caterina, Freiherr, Jessica, Laktionova, Tatiana, Mariño, Sajidxa, Monteleone, Erminio, Nunez-Parra, Alexia, Abdulrahman, Olagunju, Ritchie, Marina, Thomas-Danguin, Thierry, Walsh-Messinger, Julie, Al Abri, Rashid, Alizadeh, Rafieh, Bignon, Emmanuelle, Cantone, Elena, Cecchini, Maria Paola, Chen, Jingguo, Guàrdia, Maria Dolors, Hoover, Kara, Karni, Noam, Navarro, Marta, Nolden, Alissa, Mazal, Patricia Portillo, Rowan, Nicholas, Sarabi-Jamab, Atiye, Archer, Nicholas, Chen, Ben, Di Valerio, Elizabeth, Feeney, Emma, Frasnelli, Johannes, Hannum, Mackenzie, Hopkins, Claire, Klein, Hadar, Mignot, Coralie, Mucignat, Carla, Ning, Yuping, Ozturk, Elif, Peng, Mei, Saatci, Ozlem, Sell, Elizabeth, Yan, Carol, Alfaro, Raul, Cecchetto, Cinzia, Coureaud, Gérard, Herriman, Riley, Justice, Jeb, Kaushik, Pavan Kumar, Koyama, Sachiko, Overdevest, Jonathan, Pirastu, Nicola, Ramirez, Vicente, Roberts, S. Craig, Smith, Barry, Cao, Hongyuan, Wang, Hong, Balungwe, Patrick, Baguma, Marius, Veldhuizen, Maria, Farruggia, Michael, Pizio, Antonella, Hakan Ozdener, M, Fjaeldstad, Alexander, Lin, Cailu, Sandell, Mari, Singh, Preet, Brindha, V. Evelyn, Olsson, Shannon, Saraiva, Luis, Ahuja, Gaurav, Alwashahi, Mohammed, Bhutani, Surabhi, Fornazieri, Marco, Golebiowski, Jérôme, Hwang, Liang-Dar, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine, Faraji, Farhoud, Fischmeister, Florian, Heinbockel, Thomas, Hsieh, Julien, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas, Philpott, Carl, Pierron, Denis, Shields, Vonnie, Voznessenskaya, Vera, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan, Macchi, Alberto, Meyer, Pablo, Moein, Shima, Santamaría, Enrique, Sengupta, Debarka, Rohlfs Dominguez, Paloma, Yanik, Hüseyin, Group, GCCR, Hummel, Thomas, Hayes, John, Reed, Danielle, Niv, Masha, Munger, Steven, Parma, Valentina, Arizona State University [Tempe] (ASU), Institute of Neuroscience and Medicine [Jülich] (INM-1), Mersin University, National Institutes of Health [Bethesda] (NIH), AbScent, Pennsylvania State University (Penn State), Penn State System, National Institute of Diabetes and Digestive and Kidney Diseases [Bethesda], Yale University [New Haven], Tennessee State University, University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Institut de Chimie de Nice (ICN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Buenos Aires University and GEOG (Grupo de Estudio de Olfato y Gusto), Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), University of Bari Aldo Moro (UNIBA), University of California [Irvine] (UCI), University of California, Utrecht University [Utrecht], Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Monell Chemical Senses Center, Regional Hospital West Jutland [Denmark], University of Helsinki, University of Oslo (UiO), Karunya University, Tata Institute for Fundamental Research (TIFR), Research at Sidra Medicine Research Branch [Doha, Qatar], Indraprastha Institute of Information Technology [New Delhi] (IIIT-Delhi), Sultan Qaboos University (SQU), San Diego State University (SDSU), Goethe-University Frankfurt am Main, State University of Londrina = Universidade Estadual de Londrina, University of Queensland [Brisbane], Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), University College of London [London] (UCL), University of Graz, Howard University, Geneva University Hospital (HUG), Cliniques Universitaires Saint-Luc [Bruxelles], Aristotle University of Thessaloniki, Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), University of Gastronomic Sciences of Pollenzo (UNISG), Stockholm University, University of East Anglia [Norwich] (UEA), Towson University [Towson, MD, United States], University of Maryland System, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences [Moscow] (RAS), Universita degli Studi di Padova, Biruni University, Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Hospital General de Barrio Obrero [Asunción, Paraguay] (Public Hospital Barrio Obrero ), Private practice [Milan], DreamAir Llc, Oregon State University (OSU), Cancer Center Karolinska [Karolinska Institutet] (CCK), Karolinska Institutet [Stockholm], University of Insubria, Varese, Computational Biology Center (IBM T.J. Watson Research Center), IBM, Institute for Research in Fundamental Sciences [Tehran] (IPM), Instituto de Investigación Sanitaria de Navarra [Pamplona, Spain] (IdiSNA), University of Extremadura, Technische Universität Dresden = Dresden University of Technology (TU Dresden), The Hebrew University of Jerusalem (HUJ), University of Florida [Gainesville] (UF), Temple University [Philadelphia], Pennsylvania Commonwealth System of Higher Education (PCSHE), Non-byline authors (to be listed as collaborators in PubMed under the GCCR Group Author): Sanne Boesveldt, Jasper H.B. de Groot, Caterina Dinnella, Jessica Freiherr, Tatiana Laktionova, Sajidxa Mariño, Erminio Monteleone, Alexia Nunez-Parra, Olagunju Abdulrahman, Marina Ritchie, Thierry Thomas-Danguin, Julie Walsh-Messinger, Rashid Al Abri, Rafieh Alizadeh, Emmanuelle Bignon, Elena Cantone, Maria Paola Cecchini, Jingguo Chen, Maria Dolors Guàrdia, Kara C. Hoover, Noam Karni, Marta Navarro, Alissa A. Nolden, Patricia Portillo Mazal, Nicholas R. Rowan, Atiye SarabiJamab, Nicholas S. Archer, Ben Chen, Elizabeth A. Di Valerio, Emma L. Feeney, Johannes Frasnelli, Mackenzie E. Hannum, Claire Hopkins, Hadar Klein, Coralie Mignot, Carla Mucignat, Yuping Ning, Elif E. Ozturk, Mei Peng, Ozlem Saatci, Elizabeth A. Sell, Carol H. Yan, Raul Alfaro, Cinzia Cecchetto, Gérard Coureaud, Riley D. Herriman, Jeb M. Justice, Pavan Kumar Kaushik, Sachiko Koyama, Jonathan B. Overdevest, Nicola Pirastu, Vicente A. Ramirez, S. Craig Roberts, Barry C. Smith, Hongyuan Cao, Hong Wang, Patrick Balungwe Birindwa, Marius Baguma, Karl-Franzens-Universität [Graz, Autriche], Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, The Pennsylvania State University, University of Tennessee, University of Buenos Aires [Argentina], Università degli studi di Bari Aldo Moro (UNIBA), Goethe University of Frankfurt am Main, Wageningen University and Research [Wageningen] (WUR), Radboud university [Nijmegen], Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), A.N. Severtsov Institute of Ecology and Evolution RAS, 119071, Russia., RespiraLibre - Centro de Otorrinolaringología, Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Partenaires INRAE, Universidad de Chile = University of Chile [Santiago] (UCHILE), Federal University of Technology of Akure (FUTA), Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Bourgogne Franche-Comté [COMUE] (UBFC), University of Dayton, Iran University of Medical Sciences, University of Naples Federico II, University of Verona (UNIVR), Head and Neck Surgery, Hospital of Xi'an Jiaotong University, Institute of Agrifood Research and Technology (IRTA), University of Alaska [Fairbanks] (UAF), Hadassah Hebrew University Medical Center [Jerusalem], University of Southern Queensland (USQ), University of Massachusetts, Instituto Universitario del Hospital Italiano [Buenos Aires, Argentina], Johns Hopkins University School of Medicine [Baltimore], Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), The First Affiliated Hospital of Guangzhou Medical University (GMU), University College Dublin [Dublin] (UCD), Université du Québec à Trois-Rivières (UQTR), Guy's and St Thomas' Hospitals, University of Padova [Padova, Italy], Kilis Yedi Aralik University, University of Otago [Dunedin, Nouvelle-Zélande], Sancaktepe Education and Research Hospital, Hospital of the University of Pennsylvania (HUP), Perelman School of Medicine, University of Pennsylvania [Philadelphia]-University of Pennsylvania [Philadelphia], UC San Diego Health, University ofFlorida, Tata Institute of Fundamental Research, Indiana University [Bloomington], Indiana University System, Columbia University Irving Medical Center (CUIMC), University of Edinburgh, University of California [Merced], University of Stirling, University of London [London], Florida State University [Panama City], Université catholique de Bukavu, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Karunya Institute of Technology and Sciences, Sidra Medicine, School of Exercise and Nutritional Sciences, Howard University College of Medicine, Geneva University Hospitals, Geneva University , Geneva , Switzerland., CHU Genève, General Hospital Papageorgiou, University of Toulouse, University of Padova, Lyon Neuroscience Research center, IBM T.J. Watson Research Center, Navarrabiomed-IdiSNA, Temple University, Julien, Sabine, Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Universitad de Buenos Aires = University of Buenos Aires [Argentina], Università degli studi di Bari Aldo Moro = University of Bari Aldo Moro (UNIBA), University of California [Irvine] (UC Irvine), University of California (UC), Karl-Franzens-Universität Graz, Universidad de Extremadura - University of Extremadura (UEX), Radboud University [Nijmegen], Università degli Studi di Firenze = University of Florence (UniFI), University of Naples Federico II = Università degli studi di Napoli Federico II, Università degli studi di Verona = University of Verona (UNIVR), Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA), Università degli Studi di Padova = University of Padua (Unipd), University of Pennsylvania-University of Pennsylvania, School of Medicine [Univ California San Diego] (UC San Diego), University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC)-University of California [San Diego] (UC San Diego), University of California (UC)-University of California (UC), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Tata Institute of Fundamental Research [Bangalore], University of California [Merced] (UC Merced), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Sidra Medicine [Doha, Qatar], Universitá degli Studi dell’Insubria = University of Insubria [Varese] (Uninsubria), and Universitá degli Studi dell’Insubria
- Subjects
Adult ,Male ,medicine.medical_specialty ,Coronavirus disease 2019 (COVID-19) ,Cross-sectional study ,Visual analogue scale ,Anosmia ,Audiology ,Logistic regression ,AcademicSubjects/SCI01180 ,Article ,Odds ,03 medical and health sciences ,0302 clinical medicine ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Hyposmia ,Humans ,Medicine ,[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs ,030223 otorhinolaryngology ,SARS-CoV-2 ,business.industry ,[SCCO.NEUR]Cognitive science/Neuroscience ,COVID-19 ,Middle Aged ,Prognosis ,Smell ,[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition ,Cross-Sectional Studies ,[SDV.MHEP.OS] Life Sciences [q-bio]/Human health and pathology/Sensory Organs ,Smell loss ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Female ,Original Article ,Self Report ,medicine.symptom ,business ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
BackgroundCOVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19.MethodsThis preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery.ResultsBoth C19+ and C19-groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ∼50% of participants and was best predicted by time since illness onset.ConclusionsAs smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4
- Published
- 2020
5. Recent smell loss is the best predictor of COVID-19:a preregistered, cross-sectional study
- Author
-
Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria Geraldine, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, M Hakan, Fjaeldstad, Alexander W, Lin, Cailu, Sandell, Mari A, Singh, Preet B, Brindha, V Evelyn, Olsson, Shannon B, Saraiva, Luis R, Ahuja, Gaurav, Alwashahi, Mohammed K, Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A, Golebiowski, Jérôme, Hwang, Liang-Dar, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L, Faraji, Farhoud, Fischmeister, Florian Ph S, Heinbockel, Thomas, Hsieh, Julien W, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K, Philpott, Carl M, Pierron, Denis, Shields, Vonnie D C, Voznessenskaya, Vera V, and Albayay, Javier
- Subjects
COVID-19 ,Lugtesans - Abstract
BACKGROUND: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19.METHODS: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery.RESULTS: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset.CONCLUSIONS: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10
- Published
- 2020
- Full Text
- View/download PDF
6. Responses to Sulfated Steroids of Female Mouse Vomeronasal Sensory Neurons
- Author
-
Celsi, Fulvio, D’Errico, Anna, and Menini, Anna
- Published
- 2012
- Full Text
- View/download PDF
7. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input
- Author
-
DʼErrico, Anna, Prestori, Francesca, and DʼAngelo, Egidio
- Published
- 2009
- Full Text
- View/download PDF
8. Recent smell loss is the best predictor of COVID-19: a preregistered, cross-sectional study
- Author
-
Parma, Valentina, Overdevest, Jonathan B, Peng, Mei, Saatci, Ozlem, Sell, Elizabeth A, Yan, Carol H, Alfaro, Raul, Cecchetto, Cinzia, Coureaud, Gérard, Herriman, Riley D, Justice, Jeb M, Kaushik, Pavan Kumar, Koyama, Sachiko, Pirastu, Nicola, Ning, Yuping, Ramirez, Vicente A, Roberts, S Craig, Smith, Barry C, Cao, Hongyuan, Wang, Hong, Balungwe, Patrick, Baguma, Marius, Hummel, Thomas, Hayes, John E, Reed, Danielle R, Niv, Masha Y, Munger, Steven D, Ozturk, Elif E, Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria Geraldine, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, M Hakan, Fjaeldstad, Alexander W, Lin, Cailu, Sandell, Mari A, Singh, Preet B, Brindha, V Evelyn, Olsson, Shannon B, Saraiva, Luis R, Ahuja, Gaurav, Alwashahi, Mohammed K, Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A, Golebiowski, Jérôme, Hwang, Liang-Dar, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L, Faraji, Farhoud, Fischmeister, Florian Ph S, Heinbockel, Thomas, Hsieh, Julien W, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K, Philpott, Carl M, Pierron, Denis, Shields, Vonnie D C, Voznessenskaya, Vera V, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María Adelaida, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan N, Macchi, Alberto, Meyer, Pablo, Moein, Shima T, Santamaría, Enrique, Sengupta, Debarka, Domínguez, Paloma Paloma, Yanık, Hüseyin, Boesveldt, Sanne, de Groot, Jasper H B, Dinnella, Caterina, Freiherr, Jessica, Laktionova, Tatiana, Mariño, Sajidxa, Monteleone, Erminio, Nunez-Parra, Alexia, Abdulrahman, Olagunju, Ritchie, Marina, Thomas-Danguin, Thierry, Walsh-Messinger, Julie, Al Abri, Rashid, Alizadeh, Rafieh, Bignon, Emmanuelle, Cantone, Elena, Cecchini, Maria Paola, Chen, Jingguo, Guàrdia, Maria Dolors, Hoover, Kara C, Karni, Noam, Navarro, Marta, Nolden, Alissa A, Mazal, Patricia Portillo, Rowan, Nicholas R, Sarabi-Jamab, Atiye, Archer, Nicholas S, Chen, Ben, Di Valerio, Elizabeth A, Feeney, Emma L, Frasnelli, Johannes, Hannum, Mackenzie, Hopkins, Claire, Klein, Hadar, Mignot, Coralie, Mucignat, Carla, UCL - (SLuc) Service d'oto-rhino-laryngologie, and UCL - SSS/IONS/NEUR - Clinical Neuroscience
- Abstract
COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19. This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset. As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10
- Published
- 2020
9. More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis
- Author
-
Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Pizio, Antonella di, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R., Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guárdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A., Lim, Juyun, Whitcroft, K.L., Colquitt, Lauren R., Ferdenzi, Camille, Brindha, Evelyn V., Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M., Fiorucci, Sébastien, Philpott, Carl M., Smith, Barry C., Lundström, Johan N., Mucignat, Carla, Parker, Jane K., Brink, Mirjam van den, Schmuker, Michael, Fischmeister, Florian P.S., Heinbockel, Thomas, Schilds, Vonnie D.C., Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E.A., Morini, Gabriella, Olofsson, Jonas K., Jalessi, Maryam, Karni, Noam, D'Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M., Alwashahi, Mohanned K., Welge-Lüssen, Antje, Freiherr, Jessica, Groot, Jasper H.B. de, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W., Reed, Danielle R., Hummel, Thomas, Munger, Steven D., Hayes, John E., and Publica
- Abstract
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (−79.7 ± 28.7, mean ± standard deviation), taste (−69.0 ± 32.6), and chemesthetic (−37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
- Published
- 2020
10. A practice-based trial of blood pressure control in African Americans (TLC-Clinic): study protocol for a randomized controlled trial
- Author
-
Schoenthaler Antoinette, Luerassi Leanne, Teresi Jeanne A, Silver Stephanie, Kong Jian, Odedosu Taiye, Trilling Samantha, Errico Anna, Uvwo Oshevire, Sebek Kimberly, Adekoya Adetutu, and Ogedegbe Gbenga
- Subjects
Hypertension ,African American ,Therapeutic Lifestyle Changes ,Practice-based trial ,Medicine (General) ,R5-920 - Abstract
Abstract Background Poorly controlled hypertension (HTN) remains one of the most significant public health problems in the United States, in terms of morbidity, mortality, and economic burden. Despite compelling evidence supporting the beneficial effects of therapeutic lifestyle changes (TLC) for blood pressure (BP) reduction, the effectiveness of these approaches in primary care practices remains untested, especially among African Americans, who share a disproportionately greater burden of HTN-related outcomes. Methods/Design This randomized controlled trial tests the effectiveness of a practice-based comprehensive therapeutic lifestyle intervention, delivered through group-based counseling and motivational interviewing (MINT-TLC) versus Usual Care (UC) in 200 low-income, African Americans with uncontrolled hypertension. MINT-TLC is designed to help patients make appropriate lifestyle changes and develop skills to maintain these changes long-term. Patients in the MINT-TLC group attend 10 weekly group classes focused on healthy lifestyle changes (intensive phase); followed by 3 monthly individual motivational interviewing (MINT) sessions (maintenance phase). The intervention is delivered by trained research personnel with appropriate treatment fidelity procedures. Patients in the UC condition receive a single individual counseling session on healthy lifestyle changes and print versions of the intervention materials. The primary outcome is within-patient change in both systolic and diastolic BP from baseline to 6 months. In addition to BP control at 6 months, other secondary outcomes include changes in the following lifestyle behaviors from baseline to 6 months: a) physical activity, b) weight loss, c) number of daily servings of fruits and vegetables and d) 24-hour urinary sodium excretion. Discussion This vanguard trial will provide information on how to refine MINT-TLC and integrate it into a standard treatment protocol for hypertensive African Americans as a result of the data obtained; thus maximizing the likelihood of its translation into clinical practice. Trial Registration Clinicaltrials.gov NCT01070056
- Published
- 2011
- Full Text
- View/download PDF
11. Regulatory Features for Odorant Receptor Genes in the Mouse Genome
- Author
-
Degl’Innocenti, Andrea and D’Errico, Anna
- Subjects
promoter ,epigenetics ,Mini Review ,TFBS ,allelic exclusion ,element ,Genetics ,gene expression ,odorant receptor gene choice ,Molecular Medicine ,enhancer ,Genetics (clinical) - Abstract
The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron–one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes.
- Published
- 2017
- Full Text
- View/download PDF
12. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb
- Author
-
Lehmann, Alexander, D’Errico, Anna, Vogel, Martin, and Spors, Hartwig
- Subjects
Male ,Patch-Clamp Techniques ,Time Factors ,Cognitive Neuroscience ,Statistics as Topic ,Neuroscience (miscellaneous) ,Mice, Transgenic ,Membrane Potentials ,Cellular and Molecular Neuroscience ,inhibitory interactions ,Mice ,Bacterial Proteins ,Channelrhodopsins ,Animals ,optogenetics ,Original Research ,Neurons ,Brain Mapping ,Neural Inhibition ,Olfactory Bulb ,Sensory Systems ,in vivo ,Luminescent Proteins ,ROC Curve ,spatiotemporal patterns ,Female ,Nerve Net ,channel rhodopsin ,Photic Stimulation ,Neuroscience - Abstract
Mitral and tufted cells (MTCs) of the mammalian olfactory bulb are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout, and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore, we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than five glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics.
- Published
- 2016
13. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics.
- Author
-
Mager, Thomas, de la Morena, David Lopez, Senn, Verena, Schlotte, Johannes, D´Errico, Anna, Feldbauer, Katrin, Wrobel, Christian, Sangyong Jung, Bodensiek, Kai, Rankovic, Vladan, Browne, Lorcan, Huet, Antoine, Jüttner, Josephine, Wood, Phillip G., Letzkus, Johannes J., Moser, Tobias, and Bamberg, Ernst
- Subjects
OPTOGENETICS ,CYTOLOGY ,NEURAL stimulation ,COCHLEAR implants ,CEREBRAL cortex ,ACOUSTIC nerve ,COCHLEAR nucleus - Abstract
Optogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrhodopsins allow fast neural photoactivation over the whole range of the visible spectrum. We focus our functional analysis on the fast-switching, red light-activated Chrimson variants, because red light has lower light scattering and marginal phototoxicity in tissues. We show paradigmatically for neurons of the cerebral cortex and the auditory nerve that the fast Chrimson mutants enable neural stimulation with firing frequencies of several hundred Hz. They drive spiking at high rates and temporal fidelity with low thresholds for stimulus intensity and duration. Optical cochlear implants restore auditory nerve activity in deaf mice. This demonstrates that the mutants facilitate neuroscience research and future medical applications such as hearing restoration. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
14. Regulatory Features for Odorant Receptor Genes in the Mouse Genome.
- Author
-
Degl'Innocenti, Andrea and D'Errico, Anna
- Subjects
OLFACTORY receptors ,GENE expression - Abstract
The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron-one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
15. How Synaptic Release Probability Shapes Neuronal Transmission: Information-Theoretic Analysis in a Cerebellar Granule Cell.
- Author
-
Arleo, Angelo, Nieus, Thierry, Bezzi, Michele, D’Errico, Anna, D’Angelo, Egidio, and Coenen, Olivier J.-M. D.
- Subjects
NEURAL transmission ,SYNAPSES ,NEURONS ,CELLULAR signal transduction ,COMPUTER simulation - Abstract
Anerve cell receives multiple inputs from upstream neurons byway of its synapses.Neuron processing functions are thus influenced by changes in the biophysical properties of the synapse, such as long-term potentiation (LTP) or depression (LTD). This observation has opened new perspectives on the biophysical basis of learning and memory, but its quantitative impact on the information transmission of a neuron remains partially elucidated. One major obstacle is the high dimensionality of the neuronal input-output space, which makes it unfeasible to perform a thorough computational analysis of a neuron with multiple synaptic inputs. In this work, information theory was employed to characterize the information transmission of a cerebellar granule cell over a region of its excitatory input space following synaptic changes. Granule cells have a small dendritic tree (on average, they receive only four mossy fiber afferents), which greatly bounds the input combinatorial space, reducing the complexity of information-theoretic calculations. Numerical simulations and LTP experiments quantified how changes in neurotransmitter release probability (p) modulated information transmission of a cerebellar granule cell. Numerical simulations showed that p shaped the neurotransmission landscape in unexpected ways. As p increased, the optimality of the information transmission of most stimuli did not increase strictly monotonically; instead it reached a plateau at intermediate p levels. Furthermore, our results showed that the spatiotemporal characteristics of the inputs determine the effect of p on neurotransmission, thus permitting the selection of distinctive preferred stimuli for different p values. These selective mechanisms may have important consequences on the encoding of cerebellar mossy fiber inputs and the plasticity and computation at the next circuit stage, including the parallel fiber-Purkinje cell synapses. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
16. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input.
- Author
-
D’Errico, Anna, Prestori, Francesca, and D'Angelo, Egidio
- Abstract
Sensory stimulation conveys spike discharges of variable frequency and duration along the mossy fibres of cerebellum raising the question of whether and how these patterns determine plastic changes at the mossy fibre–granule cell synapse. Although various combinations of high-frequency bursts and membrane depolarization can induce NMDA receptor-dependent long-term depression (LTD) and long-term potentiation (LTP), the effect of different discharge frequencies remained unknown. Here we show that low-frequency mossy fibre stimulation (100 impulses−1 Hz) induces mGlu receptor-dependent LTD. For various burst frequencies, the plasticity–[Ca2+]i relationship was U-shaped resembling the Bienenstok–Cooper–Munro (BCM) learning rule. Moreover, LTD expression was associated with increased paired-pulse ratio, coefficient of variation and failure rate, and with a decrease in release probability, therefore showing changes opposite to those characterizing LTP. The plasticity–[Ca2+]i relationship and the changes in neurotransmitter release measured by varying induction frequencies were indistinguishable from those obtained by varying high-frequency burst duration. These results suggest that different glutamate receptors converge onto a final common mechanism translating the frequency and duration of mossy fibre discharges into a regulation of the LTP/LTD balance, which may play an important role in adapting spatio-temporal signal transformations at the cerebellar input stage. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
17. Intracellular Calcium Regulation by Burst Discharge Determines Bidirectional Long-Term Synaptic Plasticity at the Cerebellum Input Stage.
- Author
-
Gall, David, Prestori, Francesca, Sola, Elisabetta, D'Errico, Anna, Roussel, Celine, Forti, Lia, Rossi, Paola, and D'Angelo, Egidio
- Subjects
CALCIUM ,NEUROPLASTICITY ,SIGNAL processing ,ION channels ,CEREBELLUM ,BRAIN ,CEREBELLAR cortex - Abstract
Variations in intracellular calcium concentration ([Ca
2+ ]i ) provide a critical signal for synaptic plasticity. In accordance with Hebb's postulate (Hebb, 1949), an increase in postsynaptic [Ca2+ ]i can induce bidirectional changes in synaptic strength depending on activation of specific biochemical pathways (Bienenstock et al., 1982; Lisman, 1989; Stanton and Sejnowski, 1989). Despite its strategic location for signal processing, spatiotemporal dynamics of [Ca2+ ]i changes and their relationship with synaptic plasticity at the cerebellar mossy fiber (mf)-granule cell (GrC) relay were unknown. In this paper, we report the plasticity/[Ca2+ ]i relationship for GrCs, which are typically activated by mf bursts (Chadderton et al., 2004). Mf bursts caused a remarkable [Ca2+ ]i increase in GrC dendritic terminals through the activation of NMDA receptors, metabotropic glutamate receptors (probably acting through IP3 -sensitive stores), voltage-dependent calcium channels, and Ca2+ -induced Ca2+ release. Although [Ca2+ ]i increased with the duration of mf bursts, long-term depression was found with a small [Ca2+ ]i increase (bursts <250 ms), and long-term potentiation (LTP) was found with a large [Ca2+ ]i increase (bursts > 250 ms). LTP and [Ca2+ ]i saturated for bursts > 500 ms and with theta-burst stimulation. Thus, bursting enabled a Ca2+ -dependent bidirectional Bienenstock-Cooper-Munro-like learning mechanism providing the cellular basis for effective learning of burst patterns at the input stage of the cerebellum. [ABSTRACT FROM AUTHOR]- Published
- 2005
- Full Text
- View/download PDF
18. Giving a Voice to Patients With Smell Disorders Associated With COVID-19: Cross-Sectional Longitudinal Analysis Using Natural Language Processing of Self-Reports.
- Author
-
Menger NS, Tognetti A, Farruggia MC, Mucignat C, Bhutani S, Cooper KW, Rohlfs Domínguez P, Heinbockel T, Shields VDC, D'Errico A, Pereda-Loth V, Pierron D, Koyama S, and Croijmans I
- Subjects
- Humans, Cross-Sectional Studies, Male, Female, Longitudinal Studies, Middle Aged, Adult, Aged, Young Adult, COVID-19 complications, COVID-19 epidemiology, Olfaction Disorders epidemiology, Olfaction Disorders etiology, Self Report, Natural Language Processing
- Abstract
Background: Smell disorders are commonly reported with COVID-19 infection. The smell-related issues associated with COVID-19 may be prolonged, even after the respiratory symptoms are resolved. These smell dysfunctions can range from anosmia (complete loss of smell) or hyposmia (reduced sense of smell) to parosmia (smells perceived differently) or phantosmia (smells perceived without an odor source being present). Similar to the difficulty that people experience when talking about their smell experiences, patients find it difficult to express or label the symptoms they experience, thereby complicating diagnosis. The complexity of these symptoms can be an additional burden for patients and health care providers and thus needs further investigation., Objective: This study aims to explore the smell disorder concerns of patients and to provide an overview for each specific smell disorder by using the longitudinal survey conducted in 2020 by the Global Consortium for Chemosensory Research, an international research group that has been created ad hoc for studying chemosensory dysfunctions. We aimed to extend the existing knowledge on smell disorders related to COVID-19 by analyzing a large data set of self-reported descriptive comments by using methods from natural language processing., Methods: We included self-reported data on the description of changes in smell provided by 1560 participants at 2 timepoints (second survey completed between 23 and 291 days). Text data from participants who still had smell disorders at the second timepoint (long-haulers) were compared with the text data of those who did not (non-long-haulers). Specifically, 3 aims were pursued in this study. The first aim was to classify smell disorders based on the participants' self-reports. The second aim was to classify the sentiment of each self-report by using a machine learning approach, and the third aim was to find particular food and nonfood keywords that were more salient among long-haulers than those among non-long-haulers., Results: We found that parosmia (odds ratio [OR] 1.78, 95% CI 1.35-2.37; P<.001) as well as hyposmia (OR 1.74, 95% CI 1.34-2.26; P<.001) were more frequently reported in long-haulers than in non-long-haulers. Furthermore, a significant relationship was found between long-hauler status and sentiment of self-report (P<.001). Finally, we found specific keywords that were more typical for long-haulers than those for non-long-haulers, for example, fire, gas, wine, and vinegar., Conclusions: Our work shows consistent findings with those of previous studies, which indicate that self-reports, which can easily be extracted online, may offer valuable information to health care and understanding of smell disorders. At the same time, our study on self-reports provides new insights for future studies investigating smell disorders., (©Nick S Menger, Arnaud Tognetti, Michael C Farruggia, Carla Mucignat, Surabhi Bhutani, Keiland W Cooper, Paloma Rohlfs Domínguez, Thomas Heinbockel, Vonnie D C Shields, Anna D'Errico, Veronica Pereda-Loth, Denis Pierron, Sachiko Koyama, Ilja Croijmans. Originally published in JMIR Public Health and Surveillance (https://publichealth.jmir.org), 10.05.2024.)
- Published
- 2024
- Full Text
- View/download PDF
19. From loss to recovery: how to effectively assess chemosensory impairments during COVID-19 pandemic.
- Author
-
Cecchetto C, Di Pizio A, Genovese F, Calcinoni O, Macchi A, Dunkel A, Ohla K, Spinelli S, Farruggia MC, Joseph PV, Menini A, Cantone E, Dinnella C, Cecchini MP, D'Errico A, Mucignat-Caretta C, Parma V, and Dibattista M
- Abstract
Chemosensory impairments have been established as a specific indicator of COVID-19. They affect most patients and may persist long past the resolution of respiratory symptoms, representing an unprecedented medical challenge. Since the SARS-CoV-2 pandemic started, we now know much more about smell, taste, and chemesthesis loss associated with COVID-19. However, the temporal dynamics and characteristics of recovery are still unknown. Here, capitalizing on data from the Global Consortium for Chemosensory Research (GCCR) crowdsourced survey, we assessed chemosensory abilities after the resolution of respiratory symptoms in participants diagnosed with COVID-19 during the first wave of the pandemic in Italy. This analysis led to the identification of two patterns of chemosensory recovery, limited (partial) and substantial, which were found to be associated with differential age, degrees of chemosensory loss, and regional patterns. Uncovering the self-reported phenomenology of recovery from smell, taste, and chemesthetic disorders is the first, yet essential step, to provide healthcare professionals with the tools to take purposeful and targeted action to address chemosensory disorders and its severe discomfort.
- Published
- 2021
- Full Text
- View/download PDF
20. Corrigendum to: More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis.
- Author
-
Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, Cooper KW, Bouysset C, Pirastu N, Dibattista M, Kaur R, Liuzza MT, Pepino MY, Schöpf V, Pereda-Loth V, Olsson SB, Gerkin RC, Rohlfs Domínguez P, Albayay J, Farruggia MC, Bhutani S, Fjaeldstad AW, Kumar R, Menini A, Bensafi M, Sandell M, Konstantinidis I, Di Pizio A, Genovese F, Öztürk L, Thomas-Danguin T, Frasnelli J, Boesveldt S, Saatci Ö, Saraiva LR, Lin C, Golebiowski J, Hwang LD, Ozdener MH, Guàrdia MD, Laudamiel C, Ritchie M, Havlícek J, Pierron D, Roura E, Navarro M, Nolden AA, Lim J, Whitcroft KL, Colquitt LR, Ferdenzi C, Brindha EV, Altundag A, Macchi A, Nunez-Parra A, Patel ZM, Fiorucci S, Philpott CM, Smith BC, Lundström JN, Mucignat C, Parker JK, van den Brink M, Schmuker M, Fischmeister FPS, Heinbockel T, Shields VDC, Faraji F, Santamaría E, Fredborg WEA, Morini G, Olofsson JK, Jalessi M, Karni N, D'Errico A, Alizadeh R, Pellegrino R, Meyer P, Huart C, Chen B, Soler GM, Alwashahi MK, Welge-Lüssen A, Freiherr J, de Groot JHB, Klein H, Okamoto M, Singh PB, Hsieh JW, Reed DR, Hummel T, Munger SD, and Hayes JE
- Published
- 2021
- Full Text
- View/download PDF
21. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms.
- Author
-
Gerkin RC, Ohla K, Veldhuizen MG, Joseph PV, Kelly CE, Bakke AJ, Steele KE, Farruggia MC, Pellegrino R, Pepino MY, Bouysset C, Soler GM, Pereda-Loth V, Dibattista M, Cooper KW, Croijmans I, Di Pizio A, Ozdener MH, Fjaeldstad AW, Lin C, Sandell MA, Singh PB, Brindha VE, Olsson SB, Saraiva LR, Ahuja G, Alwashahi MK, Bhutani S, D'Errico A, Fornazieri MA, Golebiowski J, Dar Hwang L, Öztürk L, Roura E, Spinelli S, Whitcroft KL, Faraji F, Fischmeister FPS, Heinbockel T, Hsieh JW, Huart C, Konstantinidis I, Menini A, Morini G, Olofsson JK, Philpott CM, Pierron D, Shields VDC, Voznessenskaya VV, Albayay J, Altundag A, Bensafi M, Bock MA, Calcinoni O, Fredborg W, Laudamiel C, Lim J, Lundström JN, Macchi A, Meyer P, Moein ST, Santamaría E, Sengupta D, Rohlfs Dominguez P, Yanik H, Hummel T, Hayes JE, Reed DR, Niv MY, Munger SD, and Parma V
- Subjects
- Adult, Anosmia etiology, COVID-19 complications, Cross-Sectional Studies, Female, Humans, Male, Middle Aged, Prognosis, SARS-CoV-2 isolation & purification, Self Report, Smell, Anosmia diagnosis, COVID-19 diagnosis
- Abstract
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
22. More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis.
- Author
-
Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, Cooper KW, Bouysset C, Pirastu N, Dibattista M, Kaur R, Liuzza MT, Pepino MY, Schöpf V, Pereda-Loth V, Olsson SB, Gerkin RC, Rohlfs Domínguez P, Albayay J, Farruggia MC, Bhutani S, Fjaeldstad AW, Kumar R, Menini A, Bensafi M, Sandell M, Konstantinidis I, Di Pizio A, Genovese F, Öztürk L, Thomas-Danguin T, Frasnelli J, Boesveldt S, Saatci Ö, Saraiva LR, Lin C, Golebiowski J, Hwang LD, Ozdener MH, Guàrdia MD, Laudamiel C, Ritchie M, Havlícek J, Pierron D, Roura E, Navarro M, Nolden AA, Lim J, Whitcroft KL, Colquitt LR, Ferdenzi C, Brindha EV, Altundag A, Macchi A, Nunez-Parra A, Patel ZM, Fiorucci S, Philpott CM, Smith BC, Lundström JN, Mucignat C, Parker JK, van den Brink M, Schmuker M, Fischmeister FPS, Heinbockel T, Shields VDC, Faraji F, Santamaría E, Fredborg WEA, Morini G, Olofsson JK, Jalessi M, Karni N, D'Errico A, Alizadeh R, Pellegrino R, Meyer P, Huart C, Chen B, Soler GM, Alwashahi MK, Welge-Lüssen A, Freiherr J, de Groot JHB, Klein H, Okamoto M, Singh PB, Hsieh JW, Reed DR, Hummel T, Munger SD, and Hayes JE
- Subjects
- Adult, Aged, COVID-19, Coronavirus Infections diagnosis, Coronavirus Infections virology, Female, Humans, Male, Middle Aged, Olfaction Disorders virology, Pandemics, Pneumonia, Viral diagnosis, Pneumonia, Viral virology, SARS-CoV-2, Self Report, Smell, Somatosensory Disorders virology, Surveys and Questionnaires, Taste, Taste Disorders virology, Young Adult, Betacoronavirus isolation & purification, Coronavirus Infections complications, Olfaction Disorders etiology, Pneumonia, Viral complications, Somatosensory Disorders etiology, Taste Disorders etiology
- Abstract
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.