Certain tRNA synthetases have developed highly accurate molecular machinery to discriminate their cognate amino acids. Those aaRSs achieve their goal via editing reaction in the Connective Polypeptide 1 (CP1). Recently mutagenesis studies have revealed the critical importance of residues in the CP1 domain for editing activity and X-ray structures have shown binding mode of noncognate amino acids in the editing domain. To pursue molecular mechanism for amino acid discrimination, molecular modeling studies were performed. Our results suggest that aaRS bind the noncognate amino acid more tightly than the cognate one. Finally, by comparing binding conformations of the amino acids in three systems, the amino acid binding mode was elucidated and a discrimination mechanism proposed. The results strongly reveal that the conserved threonines are responsible for amino acid discrimination. This is achieved through side chain interactions between T252 and T247/T248 as well as between those threonines and the incoming amino acids., {"references":["Carter Jr., C. W.,\"Cognition, mechanism, and evolutionary relationships\nin aminoacyl-tRNAsynthetases\",Annu. Rev. Biochem,vol. 62, pp.\n715-748, 1993.","Martinis, S.A., and Schimmel, P.,\"Escherichia coli and Salmonella\nCellular and Molecular Biology\", 2nd Ed., ASM, Neidhardt FC,\nWashington DC, 1996.","Giege, R., Sissler, M., Florentz, C.,\"Universal rules and idiosyncratic\nfeatures in tRNA identity\",Nucleic Acids Res,vol. 26, pp.\n5017-5035,1998.","Fersht, A. R., Kaethner, M. M., \"Mechanism of aminoacylation of tRNA.\nProof of the aminoacyladenylate pathway for the isoleucyl- and\ntyrosyl-tRNAsynthetases from Escherichia coli K12\", Biochemistry,vol.\n15, pp. 818-823,1976.","Pauling, L., Festschrift f├╝r Prof. Dr. Arthur Stoll, BirkhauserVerlag, Basel\n1958.","Loftfield, R. B.,\"The Frequency of errors in protein\nbiosynthesis\",Biochem. J.,vol. 89, pp. 82-92, 1963.","Eldred, E. W., Schimmel, P.,\"Rapid deacylation by isoleucyl transfer\nribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid\naminoacylated with valine\", J. Biol. Chem.,vol. 247, pp. 2961-2964,\n1972.","Schmidt, E., Schimmel, P.,\"Insights into editing from an\nile-tRNAsynthetase structure with tRNAile and mupirocin\",Science,vol.\n285, pp. 1074-1077, 1994.","Hale, S. P., Schimmel, P.,\"Protein synthesis editing by a DNA\naptamer\",Proc. Natl. Acad. Sci. USA,vol. 93, pp. 2755-2758, 1996.\n[10] Fersht, A. R., Kaethner, M. M.,\"Enzyme hyperspecificity. Rejection of\nthreonine by the valyltRNAsynthetase by misacylation and hydrolytic\nediting\",Biochemistry,vol. 15, pp. 3342-3346, 1976.\n[11] Fersht, A. R.,\"Editing mechanisms in protein synthesis. Rejection of\nvaline by the isoleucyl-tRNAsynthetase\",Biochemistry,vol. 16, pp.\n1025-1030, 1977.\n[12] Fersht, A. R.,\"Enzyme Structure and Mechanism\", Freeman, San\nFrancisco, 1997.\n[13] Fersht, A. R., Dingwall C.,\"Establishing the misacylation/deacylation of\nthe tRNA pathway for the editing mechanism of prokaryotic and\neukaryotic valyl-tRNAsynthetases\",Biochemistry,vol. 18, pp. 1238-1245,\n1979.\n[14] Fersht, A. R.,\"Sieves in sequence\",Science,vol. 280, pp. 541, 1998.\n[15] Nureki, O., Vassylyev D. G., Tateno, M., Shimada, A., Nakama, T., Fukai,\nS., Konno, M., Hendrickson, T.L., Schimmel, P., Yokoyama, S.,\"Enzyme\nstructure with two catalytic sites for double-sieve selection of\nsubstrate\",Science,vol. 280, pp. 578-582, 1998.\n[16] Silvian, L. F., Wang, J., Steitz, T. A.,\"Insights into editing from an\nile-tRNAsynthetase structure with tRNAile and mupirocin\",Science,vol.\n285, pp. 1074-1077, 1999.\n[17] Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D. G.,\nYokoyama, S.,\"Structural basis for double-sieve discrimination of L-Val\nfrom L-Ile and L-threonine by the complex of tRNAVal and\nvalyl-tRNAsynthetase\",Cell,vol. 103, pp. 793-893, 2000.\n[18] Cusack, S., Yaremchuk, A., Tukalo, M.,\"The 2 Å crystal structure of\nleucyl-tRNAsynthetase and its complex with a leucyl-adenylate\nanalogue\",EMBO J.,vol. 19, pp. 2351-2631, 2000.\n[19] Lincecum Jr., T. L., Tukalo, M,, Yaremchuk, A., Mursinna, R. S.,\nWilliams, A. M., Sproat, B. S., Van Den Eynde, W., Link, A., Van\nCalenbergh, S., Grotli, M., Martinis, S. A., Cusack, S.,\"Structural and\nmechanistic basis of pre- and posttransfer editing by\nleucyl-tRNAsynthetase\",Mol. Cell,vol. 11, pp. 951-963, 2003.\n[20] Bishop, A. C., Nomanbhoy, T. K., Schimmel, P., \"locking site-to-site\ntranslocation of a misactivated amino acid by mutation of a class I\ntRNAsynthetase\", Proc. Natl. Acad. Sci. USA,vol. 99, pp. 585-590, 2002.\n[21] Hendrickson, T. L., Nomanbhoy, T. K., Schimmel, P.,\"Errors from\nselective disruption of the editing center in a\ntRNAsynthetase\",Biochemistry,vol. 39, pp. 8180-8186,2000.\n[22] Mursinna, R. S., Lincecum, T. L., Martinis, S. A.,\"A conserved threonine\nwithin Escherichia coli leucyl-tRNAsynthetase prevents hydrolytic\nediting of leucyl-tRNALeu\",Biochemistry,vol. 40, pp. 5376-5381, 2001.\n[23] Mursinna, R. S., Martinis, S. A., \"Rational design to block amino acid\nediting of a tRNAsynthetase\",J. Am. Chem. Soc.,vol. 124, pp. 7286-7287,\n2002.\n[24] Mursinna, R. S., Lee, K. W., Briggs, J. M., Martinis, S. A.,\"Molecular\ndissection of a critical specificity determinant within the amino acid\nediting domain of leucyl-tRNAsynthetase\",Biochemistry,vol. 43, pp.\n155-165, 2004.\n[25] Lee, K. W., Briggs, J. M.,\"Molecular modeling study of the editing active\nsite of Escherichia coli leucyl-tRNAsynthetase: two amino acid binding\nsites in the editing domain\",Proteins: Struct. Funct. Bioinformatics,vol.\n54,pp. 693-704, 2004.\n[26] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J.,\nSwaminathan, S., Karplus, M.,\"CHARMM: A program for\nmacromolecular energy, minimisation and dynamics calculations\",J.\nComp. Chem.,vol. 4, pp. 187-217, 1983.\n[27] Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N.,\nPhillips, J., Shinozaki, A., Varadarajan, K., Schulten, K.,\"NAMD2:\nGreater Scalability for Parallel Molecular Dynamics\",J. Comp. Phys.,vol.\n151, pp. 283-312,1999.\n[28] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A.,\nHaak, J. R.,\"Molecular dynamics with coupling to an external bath\",J.\nChem. Phys.,vol. 81, pp. 3684-3690,1984.\n[29] Amadei, A., Linssen, A. B. M., Berendsen, H. J. C., \"Essential dynamics\nof proteins\",Proteins: Struct. Funct. Genetics,vol. 17, pp. 412-425,1993.\n[30] Vriend, G.,\"WHAT IF: A molecular modeling and drug design\nprogram\",J. Mol. Graph.,vol. 8, pp. 52-56, 1990.\n[31] Aqvist, J., Medina, C., Samuel, J. E.,\"A new method for predicting\nbinding affinity in computer-aided drug design\",Protein Eng.,vol. 7, pp.\n385-391, 1994.\n[32] Hansson, T., Åqvist, J.,\"Estimation of binding free energies for HIV\nproteinase inhibitors by molecular dynamics simulations\",Protein\nEng.,vol. 8, pp. 1137-1144,1995.\n[33] Aqvist, J.,\"Calculation of absolute binding free energies for charged\nligands and effects of long-range electrostatic interactions\",J. Comp.\nChem.,vol. 17, pp. 1587-1597,1996.\n[34] Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., Case, D.\nA.,\"Continuum Solvent Studies of the Stability of DNA, RNA, and\nPhosphoramidate-DNA Helices\",J. Am. Chem. Soc.,vol. 120, pp.\n9401-9409, 1998.\n[35] Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee,\nM., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J.,\nCase, D. A., Cheatham, T. E. III.,\"Calculating structures and free energies\nof complex molecules: combining molecular mechanics and continuum\nmodels\",Acc. Chem. Res.,vol. 33, pp. 889-897, 2000."]}