Back to Search Start Over

Exploration of Virtual Candidates for Human HMG-CoA Reductase InhibitorsUsing Pharmacophore Modeling and Molecular Dynamics Simulations

Authors :
Chanin Park
Shalini John
Ayoung Baek
Keun Woo Lee
Sugunadevi Sakkiah
Minky Son
Source :
PLOS ONE(8): 12, PLoS ONE, Vol 8, Iss 12, p e83496 (2013), PLoS ONE
Publication Year :
2013

Abstract

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-controlling enzyme in the mevalonate pathway which involved in biosynthesis of cholesterol and other isoprenoids. This enzyme catalyzes the conversion of HMG-CoA to mevalonate and is regarded as a drug target to treat hypercholesterolemia. In this study, ten qualitative pharmacophore models were generated based on chemical features in active inhibitors of HMGR. The generated models were validated using a test set. In a validation process, the best hypothesis was selected based on the statistical parameters and used for virtual screening of chemical databases to find novel lead candidates. The screened compounds were sorted by applying drug-like properties. The compounds that satisfied all drug-like properties were used for molecular docking study to identify their binding conformations at active site of HMGR. The final hit compounds were selected based on docking score and binding orientation. The HMGR structures in complex with the hit compounds were subjected to 10 ns molecular dynamics simulations to refine the binding orientation as well as to check the stability of the hits. After simulation, binding modes including hydrogen bonding patterns and molecular interactions with the active site residues were analyzed. In conclusion, four hit compounds with new structural scaffold were suggested as novel and potent HMGR inhibitors.

Details

Language :
English
Database :
OpenAIRE
Journal :
PLOS ONE(8): 12, PLoS ONE, Vol 8, Iss 12, p e83496 (2013), PLoS ONE
Accession number :
edsair.doi.dedup.....88b49f96d29090c6364c8773d107afe9