1. Magnetic functionalization of ZnO nanoparticles surfaces via optically generated methyl radicals
- Author
-
D. Marin, G. Gerbaud, O. Margeat, F. Ziarelli, F. Ferrer, O. Ouari, A. Campos, S. Bertaina, A. Savoyant, Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Bioénergétique et Ingénierie des Protéines (BIP ), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre Pluridisciplinaire de Microscopie Electronique et de Microanalyse (AMU CP2M), Aix Marseille Université (AMU), Fédération des Sciences Chimiques de Marseille (FRSCM), and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,methyl radical ,ZnO ,Nanoparticles ,General Physics and Astronomy ,EPR ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Physical and Theoretical Chemistry ,double resonance ,PACS: 31.30.Gs, 32.30.Dx, 32.80.-t 76.30.-v, 76.70.Dx - Abstract
The combination of nuclear and electron magnetic resonance techniques, in pulse and continuous wave regimes, is used to unravel the nature and features of the light-induced magnetic state arising at the surface of chemically prepared zinc oxide nanoparticles (NPs) occurring under 120 K when subjected to a sub-bandgap (405 nm) laser excitation. It is shown that the four-line structure observed around g ∼ 2.00 in the as-grown samples (beside the usual core-defect signal at g ∼ 1.96) arises from surface-located methyl radicals (•CH3), originating from the acetate capped ZnO molecules. By functionalizing the as-grown zinc oxide NPs with deuterated sodium acetate, the •CH3 electron paramagnetic resonance (EPR) signal is replaced by trideuteromethyl (•CD3). For •CH3, •CD3, and core-defect signals, an electron spin echo is detected below ∼100 K, allowing for the spin–lattice and spin–spin relaxation-time measurements for each of them. Advanced pulse-EPR techniques reveal the proton or deuteron spin-echo modulation for both radicals and give access to small unresolved superhyperfine couplings between adjacent •CH3. In addition, electron double resonance techniques show that some correlations exist between the different EPR transitions of •CH3. These correlations are discussed as possibly arising from cross-relaxation phenomena between different rotational states of radicals.
- Published
- 2023