Back to Search Start Over

The gas-phase structure determination of α-pinene oxide: An endo-cyclic epoxide of atmospheric interest

Authors :
E. M. Neeman
N. Osseiran
T. R. Huet
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Physique Moléculaire aux Interfaces [PMI]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Physique Moléculaire aux Interfaces (PMI)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Chemical Physics, Journal of Chemical Physics, 2023, 158 (15), pp.154304. ⟨10.1063/5.0147909⟩
Publication Year :
2023
Publisher :
AIP Publishing, 2023.

Abstract

International audience; The gas-phase rotational spectra of α-pinene oxide have been recorded using a chirped-pulse Fourier transform microwave spectrometer in the 6–18 GHz frequency range. The parent species and all heavy atom isotopologues (13C and 18O) have been observed in their natural abundance. The experimental rotational constants of all isotopic species observed have been determined and used to obtain the substitution (rs) and the effective (r0) structures of the most stable conformer of α-pinene oxide. Calculations using the density functional theories B3LYP, M06-2X, and MN15-L and the ab initio method MP2 level of theory were carried out to check their performance against experimental results. The structure of the heavy atom’s skeleton of α-pinene oxide has been compared to that of α-pinene and has shown that epoxidation does not overly affect the structure of the bicycle, validating its robustness. Furthermore, the structural features have been compared to those of other bicyclic molecules, such as nopinone and β-pinene.

Details

ISSN :
10897690 and 00219606
Volume :
158
Database :
OpenAIRE
Journal :
The Journal of Chemical Physics
Accession number :
edsair.doi.dedup.....31e6e08a3f97823bb30f1e3b9df68ece