1. Rapid specialization of counter defenses enables two-spotted spider mite to adapt to novel plant hosts.
- Author
-
Salehipourshirazi G, Bruinsma K, Ratlamwala H, Dixit S, Arbona V, Widemann E, Milojevic M, Jin P, Bensoussan N, Gómez-Cadenas A, Zhurov V, Grbic M, and Grbic V
- Subjects
- Animals, Arthropod Proteins metabolism, Food Chain, Tetranychidae genetics, Adaptation, Biological, Arabidopsis physiology, Arthropod Proteins genetics, Cytochrome P-450 Enzyme System genetics, Herbivory, Phaseolus physiology, Tetranychidae physiology
- Abstract
Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts., (© The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.)
- Published
- 2021
- Full Text
- View/download PDF