Back to Search
Start Over
Rapid specialization of counter defenses enables two-spotted spider mite to adapt to novel plant hosts.
- Source :
-
Plant physiology [Plant Physiol] 2021 Dec 04; Vol. 187 (4), pp. 2608-2622. - Publication Year :
- 2021
-
Abstract
- Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts.<br /> (© The Author(s) 2021. Published by Oxford University Press on behalf of American Society of Plant Biologists.)
Details
- Language :
- English
- ISSN :
- 1532-2548
- Volume :
- 187
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Plant physiology
- Publication Type :
- Academic Journal
- Accession number :
- 34618096
- Full Text :
- https://doi.org/10.1093/plphys/kiab412