1. Multi-scenario surveillance of respiratory viruses in aerosols with sub-single-copy spatial resolution.
- Author
-
Li B, Lin B, Wang Y, Shi Y, Zeng W, Zhao Y, Gu Y, Liu C, Gao H, Cheng H, Zheng X, Xiang G, Wang G, and Liu P
- Subjects
- Humans, Air Microbiology, Influenza A virus isolation & purification, Environmental Monitoring methods, Environmental Monitoring instrumentation, Respiratory Syncytial Viruses isolation & purification, Influenza B virus isolation & purification, SARS-CoV-2 isolation & purification, COVID-19 transmission, COVID-19 virology, COVID-19 epidemiology, COVID-19 prevention & control, Aerosols analysis
- Abstract
Highly sensitive airborne virus monitoring is critical for preventing and containing epidemics. However, the detection of airborne viruses at ultra-low concentrations remains challenging due to the lack of ultra-sensitive methods and easy-to-deployment equipment. Here, we present an integrated microfluidic cartridge that can accurately detect SARS-COV-2, Influenza A, B, and respiratory syncytial virus with a sensitivity of 10 copies/mL. When integrated with a high-flow aerosol sampler, our microdevice can achieve a sub-single-copy spatial resolution of 0.83 copies/m
3 for airborne virus surveillance with an air flow rate of 400 L/min and a sampling time of 30 minutes. We then designed a series of virus-in-aerosols monitoring systems (RIAMs), including versions of a multi-site sampling RIAMs (M-RIAMs), a stationary real-time RIAMs (S-RIAMs), and a roaming real-time RIAMs (R-RIAMs) for different application scenarios. Using M-RIAMs, we performed a comprehensive evaluation of 210 environmental samples from COVID-19 patient wards, including 30 aerosol samples. The highest positive detection rate of aerosol samples (60%) proved the aerosol-based SARS-CoV-2 monitoring represents an effective method for spatial risk assessment. The detection of 78 aerosol samples in real-world settings via S-RIAMs confirmed its reliability for ultra-sensitive and continuous airborne virus monitoring. Therefore, RIAMs shows the potential as an effective solution for mitigating the risk of airborne virus transmission., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF