Back to Search
Start Over
Massively parallel profiling of RNA-targeting CRISPR-Cas13d.
- Source :
- Nature Communications; 1/12/2024, Vol. 15 Issue 1, p1-13, 13p
- Publication Year :
- 2024
-
Abstract
- CRISPR-Cas13d cleaves RNA and is used in vivo and for diagnostics. However, a systematic understanding of its RNA binding and cleavage specificity is lacking. Here, we describe an RNA Chip-Hybridized Association-Mapping Platform (RNA-CHAMP) for measuring the binding affinity for > 10,000 RNAs containing structural perturbations and other alterations relative to the CRISPR RNA (crRNA). Deep profiling of Cas13d reveals that it does not require a protospacer flanking sequence but is exquisitely sensitive to secondary structure within the target RNA. Cas13d binding is penalized by mismatches in the distal crRNA-target RNA region, while alterations in the proximal region inhibit nuclease activity. A biophysical model built from these data reveals that target recognition initiates in the distal end of the target RNA. Using this model, we design crRNAs that can differentiate between SARS-CoV-2 variants by modulating nuclease activation. This work describes the key determinants of RNA targeting by a type VI CRISPR enzyme. Systematic understanding of CRISPR enzyme RNA binding specificity and cleavage is lacking. Here the authors report RNA chip-hybridised association-mapping platform (RNA-CHAMP), a workflow that repurposes next generation DNA sequencing chips to measure the binding affinity for RNA targets. [ABSTRACT FROM AUTHOR]
- Subjects :
- CATALYTIC RNA
SARS-CoV-2
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 174799977
- Full Text :
- https://doi.org/10.1038/s41467-024-44738-w