PurposeThe purpose of this study was to demonstrate a cloud business intelligence model for industrial SMEs. An initial model was developed to accomplish this, followed by validation and finalization of the cloud business intelligence model. Additionally, this research employs a mixed-techniques approach, including both qualitative and quantitative methods. This paper aims to achieve the following objectives: (1) Recognize the Cloud business intelligence concepts. (2) Identify the role of cloud BI in SMEs. (3) Identify the factors that affect the design and presenting a Cloud business intelligence model based on critical factors affecting SMEs during pandemic COVID-19. (4) Discuss the importance of Cloud BI in pandemic COVID-19 for SMEs. (5) Provide managerial implications for using Cloud BI effectively in Iran’s SMEs.Design/methodology/approachIn the current study, an initial model was first proposed, and the cloud business intelligence model was then validated and finalized. Moreover, this study uses a mixed-methods design in which both qualitative and quantitative methods are used. The fuzzy Delphi Method has been applied for parameter validation purposes, and eventually, the Cloud business intelligence model has been presented through exploiting the interpretive structural modeling. The partial least squares method was also applied to validate the model. Data were also analyzed using the MAXQDA and Smart PLS software package.FindingsIn this research, from the elimination of synonym and frequently repeated factors and classification of final factors, six main factors, 24 subfactors and 24 identifiers were discovered from the texts of the relevant papers and interviews conducted with 19 experts in the area of BI and Cloud computing. The main factors of our research include drivers, enablers, competencies, critical success factors, SME characteristics and adoption. The subfactors of included competitors pressure, decision-making time, data access, data analysis and calculations, budget, clear view, clear missions, BI tools, data infrastructure, information merging, business key sector, data owner, business process, data resource, data quality, IT skill, organizational preparedness, innovation orientation, SME characteristics, SME activity, SME structure, BI maturity, standardization, agility, balances between BI systems and business strategies. Then, the quantitative part continued with the fuzzy Delphi technique in which two factors, decision-making time and agility, were deleted in the first round, and the second round was conducted for the rest of the factors. In that step, 24 factors were assessed based on the opinions of 19 experts. In the second round, none of the factors were removed, and thus the Delphi analysis was concluded. Next, data analysis was carried out by building the structural self-interaction matrix to present the model. According to the results, adoptability is a first-level or dependent variable. Regarding the results of interpretive structural modeling (ISM), the variable of critical success factors is a second-level variable. Enablers, competencies and SME characteristics are the third-level and most effective variables of the model. Accordingly, the initial model of Cloud BI for SMEs is presented as follows: The results of ISM revealed the impact of SME characteristics on BI critical success factors and adoptability. Since this category was not an underlying category of BI; thus, it played the role of a moderating variable for the impact of critical success factors on adoptability in the final model.Research limitations/implicationsSince this study is limited to about 100 SMEs in the north of Iran, results should be applied cautiously to SMEs in other countries. Generalizing the study's results to other industries and geographic regions should be done with care since management perceptions, and financial condition of a business vary significantly. Additionally, the topic of business intelligence in SMEs constrained the sample from the start since not all SMEs use business intelligence systems, and others are unaware of their advantages. BI tools enable the effective management of companies of all sizes by providing analytic data and critical performance indicators. In general, SMEs used fewer business intelligence technologies than big companies. According to studies, SMEs understand the value of simplifying their information resources to make critical business choices. Additionally, they are aware of the market's abundance of business intelligence products. However, many SMEs lack the technical knowledge necessary to choose the optimal tool combination. In light of the frequently significant investment required to implement BI approaches, a viable alternative for SMEs may be to adopt cloud computing solutions that enable organizations to strengthen their systems and information technologies on a pay-per-use basis while also providing access to cutting-edge BI technologies at a reasonable price.Practical implicationsBefore the implementation of Cloud BI in SMEs, condition of driver, competency and critical success factor of SMEs should also be considered. These will help to define the significant resources and skills that form the strategic edge and lead to the success of Cloud BI projects.Originality/valueMost of the previous studies have been focused on factors such as critical success factors in cloud business intelligence and cloud computing in small and medium-sized enterprises, cloud business intelligence adoption models, the services used in cloud business intelligence, the factors involved in acceptance of cloud business intelligence, the challenges and advantages of cloud business intelligence, and drivers and barriers to cloud business intelligence. None of the studied resources proposed any comprehensive model for designing and implementing cloud business intelligence in small and medium-sized enterprises; they only investigated some of the aspects of this issue.