Roman Fiala, Peter Kúš, Ivan Khalakhan, Iva Matolínová, Jaroslava Nováková, Yuliia Kosto, Vladimír Matolín, Yurii Yakovlev, Anna Ostroverkh, Yevheniia Lobko, and Břetislav Šmíd
Dependence on noble metal catalysts is considered to be the main factor which hinders wider commercialization of proton exchange membrane fuel cells (PEM-FCs) and water electrolyzers (PEM-WEs). One way of lowering the loading of Pt and Ir is by using thin-film techniques for their deposition onto the high-surface conductive nanoparticles. Another approach, which is convenient in applications where the complete cycle of electricity - > H2 - > electricity takes place, is merging the PEM-WEs and PEM-FCs into one bi-functional system – the unitized regenerative fuel cell (PEM-URFC). In accordance with the above mentioned conception, this paper revolves around unconventionally prepared bi-functional magnetron sputtered lower-loading Pt-Ir catalysts for the anode side of PEM-URFC. Two geometries of catalyst coated membranes (CCM) were compared, differing in relative positioning of individual Pt and Ir thin films sputtered on TiC-based support sublayer; the sandwich-like Ir/TiC/Pt structure and the co-sputtered Pt-Ir/TiC structure. Wide arsenal of analytical methods, ranging from photoelectron spectroscopy to electrochemical atomic force microscopy determined that co-sputtering of Pt and Ir leads to alloy formation, thus preventing iridium to fully electro-oxidize to IrOx which in turn helps to explain why sandwich-like Ir/TiC/Pt structure, with no alloy, outperforms the co-sputtered Pt-Ir/TiC CCM in both operational regimes despite having the exactly same noble metal loading. The PEM-URFC single cell with sandwich-like bi-functional anode catalyst yielded 31.8% of round-trip efficiency at 1 A cm−2 in comparison to 34.2% achieved by combination of single-purpose cells with more than double the loading of noble metals.