1. The neutron electric dipole moment experiment at the Spallation Neutron Source
- Author
-
Scott Currie, John Ramsey, Haiyan Gao, Dipangkar Dutta, Jen-Chieh Peng, Y.J. Kim, A. Lipman, A. Matlashov, E. Ihloff, M. Blatnik, E. Korobkina, M. McCrea, P. R. Huffman, C. R. Gould, C. M. O'Shaughnessy, Brad Plaster, D. Hasell, T. Rao, Mark Makela, T. D. S. Stanislaus, Wanchun Wei, C. B. Erickson, S. Baeßler, Nima Nouri, M. E. Hayden, Liang Yang, M. Broering, Ayman I. Hawari, S. Sosothikul, Yu. Efremenko, S. E. Williamson, P. E. Mueller, L. M. Bartoszek, K. K. H. Leung, A. R. Young, L. Barrón-Palos, Seppo Penttila, J. Bessuille, Geoffrey Greene, Steve K. Lamoreaux, K. A. Dow, S. W. T. MacDonald, Leah Broussard, Douglas H Beck, M. Behzadipour, Ricardo Alarcon, W. Yao, S. Slutsky, Christopher Crawford, A. Aleksandrova, R. Tavakoli Dinani, David G. Haase, Evgeni Tsentalovich, R. J. Holt, Z. Tang, R. P. Redwine, J. Kelsey, Matthew Busch, E. Leggett, A. Saftah, Steven Clayton, Ross Milner, M. W. Ahmed, Nadia Fomin, C. Vidal, Wolfgang Korsch, V. Cianciolo, E. Smith, I.F. Silvera, C. R. White, Marcus H. Mendenhall, J. Long, R. Dipert, Robert Golub, A. T. Holley, C. Osthelder, R. Carr, W. M. Snow, George M. Seidel, B. W. Filippone, W. E. Sondheim, Takeyasu M. Ito, N. S. Phan, C. Daurer, M. D. Cooper, A. Reid, C. Swank, James Maxwell, X. Sun, Pinghan Chu, H. O. Meyer, and C.-Y. Liu
- Subjects
Physics ,Physics - Instrumentation and Detectors ,Neutron electric dipole moment ,010308 nuclear & particles physics ,QC1-999 ,FOS: Physical sciences ,Field strength ,Instrumentation and Detectors (physics.ins-det) ,7. Clean energy ,01 natural sciences ,Nuclear physics ,Electric field ,0103 physical sciences ,Electromagnetic shielding ,Precession ,Ultracold neutrons ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Spin (physics) ,Nuclear Experiment ,Spallation Neutron Source - Abstract
Novel experimental techniques are required to make the next big leap in neutron electric dipole moment experimental sensitivity, both in terms of statistics and systematic error control. The nEDM experiment at the Spallation Neutron Source (nEDM@SNS) will implement the scheme of Golub & Lamoreaux [Phys. Rep., 237, 1 (1994)]. The unique properties of combining polarized ultracold neutrons, polarized $^3$He, and superfluid $^4$He will be exploited to provide a sensitivity to $\sim 10^{-28}\,e{\rm \,\cdot\, cm}$. Our cryogenic apparatus will deploy two small ($3\,{\rm L}$) measurement cells with a high density of ultracold neutrons produced and spin analyzed in situ. The electric field strength, precession time, magnetic shielding, and detected UCN number will all be enhanced compared to previous room temperature Ramsey measurements. Our $^3$He co-magnetometer offers unique control of systematic effects, in particular the Bloch-Siegert induced false EDM. Furthermore, there will be two distinct measurement modes: free precession and dressed spin. This will provide an important self-check of our results. Following five years of "critical component demonstration," our collaboration transitioned to a "large scale integration" phase in 2018. An overview of our measurement techniques, experimental design, and brief updates are described in these proceedings., Submitted to proceedings of PPNS 2018 - International Workshop on Particle physics at Neutron Sources (https://www.webofconferences.org/epj-web-of-conferences-forthcoming-conferences/1148-ppns-2018)
- Published
- 2019