1. Common variants in breast cancer risk loci predispose to distinct tumor subtypes.
- Author
-
Ahearn TU, Zhang H, Michailidou K, Milne RL, Bolla MK, Dennis J, Dunning AM, Lush M, Wang Q, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Augustinsson A, Baten A, Becher H, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Bojesen SE, Bonanni B, Børresen-Dale AL, Brauch H, Brenner H, Brooks-Wilson A, Brüning T, Burwinkel B, Buys SS, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Clarke CL, Collée JM, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dwek M, Eccles DM, Evans DG, Fasching PA, Figueroa J, Floris G, Gago-Dominguez M, Gapstur SM, García-Sáenz JA, Gaudet MM, Giles GG, Goldberg MS, González-Neira A, Alnæs GIG, Grip M, Guénel P, Haiman CA, Hall P, Hamann U, Harkness EF, Heemskerk-Gerritsen BAM, Holleczek B, Hollestelle A, Hooning MJ, Hoover RN, Hopper JL, Howell A, Jakimovska M, Jakubowska A, John EM, Jones ME, Jung A, Kaaks R, Kauppila S, Keeman R, Khusnutdinova E, Kitahara CM, Ko YD, Koutros S, Kristensen VN, Krüger U, Kubelka-Sabit K, Kurian AW, Kyriacou K, Lambrechts D, Lee DG, Lindblom A, Linet M, Lissowska J, Llaneza A, Lo WY, MacInnis RJ, Mannermaa A, Manoochehri M, Margolin S, Martinez ME, McLean C, Meindl A, Menon U, Nevanlinna H, Newman WG, Nodora J, Offit K, Olsson H, Orr N, Park-Simon TW, Patel AV, Peto J, Pita G, Plaseska-Karanfilska D, Prentice R, Punie K, Pylkäs K, Radice P, Rennert G, Romero A, Rüdiger T, Saloustros E, Sampson S, Sandler DP, Sawyer EJ, Schmutzler RK, Schoemaker MJ, Schöttker B, Sherman ME, Shu XO, Smichkoska S, Southey MC, Spinelli JJ, Swerdlow AJ, Tamimi RM, Tapper WJ, Taylor JA, Teras LR, Terry MB, Torres D, Troester MA, Vachon CM, van Deurzen CHM, van Veen EM, Wagner P, Weinberg CR, Wendt C, Wesseling J, Winqvist R, Wolk A, Yang XR, Zheng W, Couch FJ, Simard J, Kraft P, Easton DF, Pharoah PDP, Schmidt MK, García-Closas M, and Chatterjee N
- Subjects
- Biomarkers, Tumor genetics, Biomarkers, Tumor metabolism, Female, Genome-Wide Association Study, Humans, Receptor, ErbB-2 genetics, Receptor, ErbB-2 metabolism, Receptors, Estrogen genetics, Receptors, Estrogen metabolism, Receptors, Progesterone genetics, Receptors, Progesterone metabolism, Risk, Breast Neoplasms epidemiology, Breast Neoplasms genetics, Breast Neoplasms metabolism
- Abstract
Background: Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear., Methods: Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes., Results: Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions., Conclusion: This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF