9 results on '"Misof BM"'
Search Results
2. Novel familial mutation of LRP5 causing high bone mass: Genetic analysis, clinical presentation, and characterization of bone matrix mineralization.
- Author
-
Roetzer KM, Uyanik G, Brehm A, Zwerina J, Zandieh S, Czech T, Roschger P, Misof BM, and Klaushofer K
- Subjects
- Female, Humans, Middle Aged, Mutation, Pedigree, Young Adult, Bone Density genetics, Low Density Lipoprotein Receptor-Related Protein-5 genetics
- Abstract
The Wnt signalling pathway is a critical regulator of bone mass and quality. Several heterozygous mutations in the LRP5 gene, a Wnt co-receptor, causing high bone mass (LRP5-HBM) have been described to date. The pathogenic mechanism is thought to be a gain-of-function caused by impaired inhibition of the canonical Wnt signalling pathway, thereby leading to increased bone formation. We report the cases of two affected family members, a 53-year-old mother and her 23-year-old daughter, with high bone mass (T-scores mother: lumbar spine 11.4, femoral neck 10.5; T-scores daughter: lumbar spine 5.4, femoral neck 8.7), increased calvarial thickness, and thickened cortices of the long bones but no history of fractures. Whereas the mother did not show any indications of the mutation, the daughter suffered from congenital hearing impairment resulting in cochlear implantation, recurrent facial palsy, and migraine. In addition, she had stenosis of the foramen magnum. In both individuals, we detected a novel heterozygous duplication of six basepairs in the LRP5 gene, resulting in an insertion of two amino acids, very likely associated with a gain-of-function. When the daughter had part of the occipital bone surgically removed, the bone sample was used for the visualization of bone lamellar structure and bone cells as well as the measurement of bone mineralization density distribution (BMDD). The bone sample revealed two distinctly different regions: an intra-cortical region with osteonal remodeling, typical osteonal lamellar orientation, associated with relatively higher heterogeneity of bone matrix mineralization, and another periosteal region devoid of bone remodeling, with parallel bone lamellae and lower heterogeneity of mineralization. In conclusion, we present data on bone tissue and material level from an LRP5-HBM patient with a novel mutation in the LRP5 gene. Our findings indicate normal morphology of osteoclasts and osteoblasts as well as normal mineralization in skull bone in LRP5-HBM., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
3. Increased bone matrix mineralization in treatment-naïve children with inflammatory bowel disease.
- Author
-
Misof BM, Roschger P, Klaushofer K, Rauch F, Ma J, Mack DR, and Ward LM
- Subjects
- Adolescent, Bone Density, Calcium metabolism, Child, Cortical Bone metabolism, Female, Humans, Ilium growth & development, Ilium pathology, Male, Statistics, Nonparametric, Treatment Outcome, Bone Matrix metabolism, Calcification, Physiologic, Inflammatory Bowel Diseases physiopathology
- Abstract
Inflammatory bowel disease (IBD) affects many organ systems including the skeleton. In children with IBD, bone mineral density (BMD) and bone turnover are frequently low. Disturbances in bone mineralization density distribution (BMDD) are linked to alterations in bone material strength; however, BMDD has not previously been reported in children with chronic inflammatory disorders. The aim of this study was to characterize BMDD based on quantitative backscatter electron imaging in cancellous (Cn.) and cortical (Ct.) compartments from trans-iliac biopsy samples from a cohort of 20 treatment-naïve children at the time of their IBD diagnosis (12 males, mean age 14.5±2.3years). The outcomes were compared to pediatric reference BMDD data and correlation with revisited biochemical and histomorphometric outcomes was analyzed. BMDD in treatment-naïve children with IBD was shifted toward higher calcium concentrations compared to reference: (i) In cancellous bone, the most frequent calcium concentration (Cn.CaPeak+2.8%, p=0.004) and the portion of highly mineralized bone (Cn.CaHigh+52%, p=0.009) were increased. (ii) In cortical bone, the mineralization heterogeneity (Ct.CaWidth+17.0%, p=0.001) and Ct.CaHigh (+30.4%, p=0.006) were increased. (iii) Furthermore, significant correlations with serum alkaline phosphatase (ALP), bone-specific alkaline phosphatase (bsALP), and urinary crosslinked N-telopeptide of type I collagen (uNTX) were observed: the higher CaMean (the average calcium concentration), CaPeak and CaHigh, the lower were ALP, bsALP, and uNTX (p-value from <0.001 to 0.05). Children with treatment-naïve IBD have decreased bone turnover leading to a higher bone matrix mineralization density, findings which may contribute to compromised bone strength., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
4. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease.
- Author
-
Misof BM, Roschger P, Jorgetti V, Klaushofer K, Borba VZ, Boguszewski CL, Cohen A, Shane E, Zhou H, Dempster DW, and Moreira CA
- Subjects
- Absorptiometry, Photon, Adult, Aged, Aged, 80 and over, Bone Diseases, Metabolic epidemiology, Bone and Bones diagnostic imaging, Bone and Bones pathology, Female, Fractures, Bone epidemiology, Humans, Middle Aged, Osteoporosis epidemiology, Pulmonary Disease, Chronic Obstructive physiopathology, X-Ray Microtomography, Bone Density physiology, Bone and Bones physiopathology, Calcification, Physiologic physiology, Pulmonary Disease, Chronic Obstructive complications
- Abstract
Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p<0.001). In particular, those with lower BV/TV (<50th percentile) had significantly lower Cn.CaMean (p=0.037) and higher Cn.CaLow (p=0.020) compared with those with higher (>50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone mineralization pattern. However, the observed concomitant occurrence of relatively lower bone volumes with lower bone matrix mineralization will both contribute to the reduced aBMD in some patients with COPD., (Copyright © 2015 Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
5. Pediatric reference Raman data for material characteristics of iliac trabecular bone.
- Author
-
Gamsjaeger S, Hofstetter B, Fratzl-Zelman N, Roschger P, Roschger A, Fratzl P, Brozek W, Masic A, Misof BM, Glorieux FH, Klaushofer K, Rauch F, and Paschalis EP
- Subjects
- Adolescent, Child, Child, Preschool, Female, Humans, Infant, Male, Reference Values, Spectrum Analysis, Raman, Young Adult, Ilium anatomy & histology
- Abstract
Bone material characteristics are important contributors in the determination of bone strength. Raman spectroscopic analysis provides information on mineral/matrix ratio, mineral maturity/crystallinity, relative pyridinoline (Pyd) collagen cross-link content, relative proteoglycan content and relative lipid content. However, published reference data are available only for adults. The purpose of the present study was to establish reference data of Raman outcomes pertaining to bone quality in trabecular bone for children and young adults. To this end, tissue age defined Raman microspectroscopic analysis was performed on bone samples from 54 individuals between 1.5 and 23 years with no metabolic bone disease, which have been previously used to establish histomorphometric and bone mineralization density distribution reference values. Four distinct tissue ages, three well defined by the fluorescent double labels representing early stages of bone formation and tissue maturation (days 3, 12, 20 of tissue mineralization) and a fourth representing old mature tissue at the geometrical center of the trabeculae, were analyzed. In general, significant dependencies of the measured parameters on tissue age were found, while at any given tissue age, sex and subject age were not confounders. Specifically, mineral/matrix ratio, mineral maturity/crystallinity index and relative pyridinoline collagen cross-link content index increased by 485%, 20% and 14%, respectively between days 3 and 20. The relative proteoglycan content index was unchanged between days 3 and 20 but was elevated in the old tissue compared to young tissue by 121%. The relative lipid content decreased within days 3 to 20 by -22%. Thus, the method allows not only the monitoring of material characteristics at a specific tissue age but also the kinetics of tissue maturation as well. The established reference Raman database will serve as sensitive tool to diagnose disturbances in material characteristics of pediatric bone biopsy samples., (Copyright © 2014 Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
6. CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII.
- Author
-
Fratzl-Zelman N, Morello R, Lee B, Rauch F, Glorieux FH, Misof BM, Klaushofer K, and Roschger P
- Subjects
- Animals, Bone Density genetics, Bone Matrix physiopathology, Calcification, Physiologic genetics, Child, Child, Preschool, Extracellular Matrix Proteins genetics, Female, Femur pathology, Femur physiopathology, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Molecular Chaperones, Osteogenesis Imperfecta genetics, Osteogenesis Imperfecta metabolism, Proteins metabolism, Bone Matrix metabolism, Calcification, Physiologic physiology, Disease Models, Animal, Extracellular Matrix Proteins deficiency, Osteogenesis Imperfecta physiopathology, Proteins genetics, Up-Regulation genetics
- Abstract
Cartilage-associated protein (CRTAP) is an essential cofactor for the proper post-translational chain modification and collagen folding. CRTAP mutations lead mice (Crtap-/- mice) and humans (OI type VII) to a severe/lethal osteochondrodystrophy; patients have fractures at birth, deformities of the lower extremities and impaired growth. The consequences of CRTAP deficiency on intrinsic bone material properties are still unknown. In the present study we evaluated bone quality based on quantitative backscattered electron imaging (qBEI) to assess bone mineralization density distribution (BMDD) in femurs from 12 weeks old Crtap-/- mice and transiliac bone biopsies from 4 children with hypomorphic mutations and having residual CRTAP expression. The analyses revealed in the bone matrix of Crtap-/- animals and OI type VII patients a significant increase in mean (CaMean) and most frequent mineral concentration (CaPeak) compared to wild-type littermates and control children, respectively. The heterogeneity of mineralization (CaWidth) was reduced in Crtap-/- mice but normal in OI type VII patients. The fraction of highly mineralized bone matrix (CaHigh) was remarkably increased in the patients: cancellous bone from 2.1 to 3.7 times and cortical bone from 7.6 to 25.5 times, associated with an increased persistence of primary bone. In conclusion, the BMDD data show that CRTAP deficiency results in a shift towards higher mineral content of the bone matrix similar to classical OI with collagen gene mutations. Our data further suggest altered mineralization kinetics resulting ultimately in an overall elevated tissue mineralization density. Finally, in OI type VII patients the increased portion of primary bone is most likely reflecting a disturbed bone development.
- Published
- 2010
- Full Text
- View/download PDF
7. Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults.
- Author
-
Fratzl-Zelman N, Roschger P, Misof BM, Pfeffer S, Glorieux FH, Klaushofer K, and Rauch F
- Subjects
- Adolescent, Child, Child, Preschool, Female, Humans, In Vitro Techniques, Infant, Male, Microscopy, Electron, Scanning methods, Young Adult, Bone Density physiology, Calcification, Physiologic physiology, Ilium metabolism, Ilium ultrastructure
- Abstract
Bone mineralization density distribution (BMDD) as assessed by quantitative backscattered electron imaging (qBEI) in iliac crest bone biopsies has become in the last years a powerful diagnostic tool to evaluate the effect of metabolic bone diseases and/or therapeutic interventions on the mineralization status of the bone material. However until now, normative reference data are only available for adults. The aim of the present study is to close this gap and establish normative data from children and compare them with reference BMDD data of adults. qBEI analyses were performed on bone samples from 54 individuals between 1.5 and 23 years without metabolic bone diseases, which were previously used as study population to establish normative histomorphometric standards. In the trabecular compartment, none of the BMDD parameters showed a significant correlation with age. The BMDD was shifted towards lower mineralization density (CaMean -5.6%, p<0.0001; CaPeak -5.6%, p<0.0001; CaLow +39.0% p<0.001; CaHigh -80.7%, p<0.001) and the inter-individual variation was higher compared to the adult population. The cortices appeared to be markedly less mineralized (CaMean -3.1%, p<0.0001) than cancellous bone due to higher amounts of low mineralized secondary bone. However, the cortical BMDD parameters showed a strong correlation (r=0.38 to 0.85, with p<0.001 to<0.0001) with cancellous BMDD parameters. In conclusion, this study provides evidence that BMDD parameters in growing healthy subjects are relatively constant and that these data can be used as normative references in pediatrics osteology. The larger inter-individual variability compared to adults is most likely related to alterations of the bone turnover rate during growth.
- Published
- 2009
- Full Text
- View/download PDF
8. Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse.
- Author
-
Misof BM, Roschger P, Baldini T, Raggio CL, Zraick V, Root L, Boskey AL, Klaushofer K, Fratzl P, and Camacho NP
- Subjects
- Animals, Bone Density drug effects, Disease Models, Animal, Fractures, Bone prevention & control, Mice, Alendronate pharmacology, Bone and Bones drug effects, Osteogenesis Imperfecta physiopathology
- Abstract
Bisphosphonates have been reported to decrease the number of fractures in children with osteogenesis imperfecta (OI). The current study sought to further explore bisphosphonate-associated bone changes in OI by investigating the effects of alendronate (ALN) treatment on bone mechanical and material properties in osteogenesis imperfecta (oim/oim) and wild-type (+/+) mice treated with 26-73 microg kg(-1) day(-1) of ALN for 8 weeks via subcutaneously implanted pumps. Femoral three-point bend tests to evaluate cortical bone were combined with geometric and material density analysis. Cortical and trabecular architecture of metaphyseal bone were histomorphometrically evaluated and material density assessed by quantitative backscattered electron imaging (qBEI). For the cortical oim/oim bone, which revealed principally inferior biomechanical properties compared to +/+ bone, ALN neither improved cortical strength or any other mechanical property, nor affected cortical width (Ct.Wi.) or material density. In contrast, for the +/+ mice, bone strength was enhanced (+22%, P < 0.05) though coupled with increased brittleness (+28%, P < 0.05). This mechanical improvement was associated with an increase in Ct.Wi. (+17.3%, P = 0.02) and a reduction in heterogeneity of cortical mineralization (Ca(Width), -4%, P = 0.04). In the metaphysis, ALN raised cancellous bone volume (BV/TV) significantly in oim/oim as well as in +/+ mice (+97%, P = 0.008 and +200%, P < 0.0001, respectively). This occurred without any change in either material density or trabecular thickness (Tb.Th.) in the oim/oim mice, while in the +/+ mice, material density increased slightly but significantly (+3%, P = 0.004), and Tb.Th. increased by 77% (P < 0.0001). Taken together, these results illustrate the differential effects of ALN on oim/oim vs. +/+ bone, as well as on specific skeletal sites, i.e., cortical vs. trabecular bone. ALN augmented the mechanical, geometrical, and material properties of +/+ cortical and trabecular bone, while the only observable improvement to the oim/oim bone was increased cancellous bone volume. This suggests that in this mouse model of OI, the previously demonstrated bisphosphonate-associated reduction in fractures is primarily attributable to increased metaphyseal bone mass.
- Published
- 2005
- Full Text
- View/download PDF
9. Normal mineralization and nanostructure of sclerotic bone in mice overexpressing Fra-1.
- Author
-
Roschger P, Matsuo K, Misof BM, Tesch W, Jochum W, Wagner EF, Fratzl P, and Klaushofer K
- Subjects
- Animals, Bone and Bones anatomy & histology, Mice, Mice, Transgenic, Nanotechnology, Proto-Oncogene Proteins c-fos genetics, Bone and Bones ultrastructure, Calcification, Physiologic, Osteoporosis physiopathology, Proto-Oncogene Proteins c-fos physiology
- Abstract
Increased bone mass due to elevated number of active osteoblasts has been reported for transgenic mice overexpressing the transcription factor Fra-1. To explore the potential of the anabolic action of Fra-1 in treatment of osteoporosis, we examined the integrity of bone matrix generated in Fra-1 transgenic mice. Femora from Fra-1 transgenic (Fra-1 tg) and wild-type littermates were analyzed for bone mineralization density distribution (BMDD) and nanostructure using quantitative backscattered electron imaging (qBEI) and scanning small angle X-ray scattering (scanning-SAXS), respectively. For comparison, we studied mice lacking c-Fos (Fos-/-), which develop osteopetrosis because of the absence of osteoclasts. Morphometrical analysis of metaphyseal spongiosa revealed an up to 5-fold increase in bone volume for Fra-1 transgenic compared to wild type. BMDD indicated a transient lower mineralization of bone for Fra-1 transgenic at 5 and 8 weeks, which became comparable to that of wild-type mice by 8 months. The homogeneity of mineralization was not altered in the Fra-1 transgenic mice at any ages examined. However, it was strikingly reduced in Fos-/- due to an abundance of hypermineralized cartilage. The bone nanostructure did not show abnormalities in Fra-1 transgenic or Fos-/-. These results provide a rationale for the development of therapeutic applications involving Fra-1-induced bone formation.
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.