1. Twisted Hilbert modular surfaces, arithmetic intersections and the Jacquet–Langlands correspondence
- Author
-
Siddarth Sankaran, Gerard Freixas i Montplet, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), and Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Degree (graph theory) ,business.industry ,Mathematics::Number Theory ,General Mathematics ,010102 general mathematics ,Jacquet–Langlands correspondence ,Modular design ,01 natural sciences ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,Mathematics::Algebraic Geometry ,Mathematics::K-Theory and Homology ,0103 physical sciences ,Quadratic field ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,010307 mathematical physics ,Todd class ,[MATH]Mathematics [math] ,0101 mathematics ,Arithmetic ,Mathematics::Representation Theory ,business ,Hilbert modular surface ,Mathematics ,Volume (compression) - Abstract
International audience; We study arithmetic intersections on quaternionic Hilbert modular surfaces and Shimura curves over a real quadratic field. Our first main result is the determination of the degree of the top arithmetic Todd class of an arithmetic twisted Hilbert modular surface. This quantity is then related to the arithmetic volume of a Shimura curve, via the arithmetic Grothendieck-Riemann-Roch theorem and the Jacquet-Langlands correspondence.
- Published
- 2018
- Full Text
- View/download PDF