Back to Search
Start Over
Twisted Hilbert modular surfaces, arithmetic intersections and the Jacquet–Langlands correspondence
- Source :
- Advances in Mathematics, Advances in Mathematics, Elsevier, 2018, ⟨10.1016/j.aim.2018.01.025⟩
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- International audience; We study arithmetic intersections on quaternionic Hilbert modular surfaces and Shimura curves over a real quadratic field. Our first main result is the determination of the degree of the top arithmetic Todd class of an arithmetic twisted Hilbert modular surface. This quantity is then related to the arithmetic volume of a Shimura curve, via the arithmetic Grothendieck-Riemann-Roch theorem and the Jacquet-Langlands correspondence.
- Subjects :
- Degree (graph theory)
business.industry
Mathematics::Number Theory
General Mathematics
010102 general mathematics
Jacquet–Langlands correspondence
Modular design
01 natural sciences
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Mathematics::Algebraic Geometry
Mathematics::K-Theory and Homology
0103 physical sciences
Quadratic field
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
010307 mathematical physics
Todd class
[MATH]Mathematics [math]
0101 mathematics
Arithmetic
Mathematics::Representation Theory
business
Hilbert modular surface
Mathematics
Volume (compression)
Subjects
Details
- ISSN :
- 00018708 and 10902082
- Volume :
- 329
- Database :
- OpenAIRE
- Journal :
- Advances in Mathematics
- Accession number :
- edsair.doi.dedup.....bd76fdc4631944345aacbec6c4119b1e
- Full Text :
- https://doi.org/10.1016/j.aim.2018.01.025