Back to Search Start Over

Twisted Hilbert modular surfaces, arithmetic intersections and the Jacquet–Langlands correspondence

Authors :
Siddarth Sankaran
Gerard Freixas i Montplet
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Advances in Mathematics, Advances in Mathematics, Elsevier, 2018, ⟨10.1016/j.aim.2018.01.025⟩
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

International audience; We study arithmetic intersections on quaternionic Hilbert modular surfaces and Shimura curves over a real quadratic field. Our first main result is the determination of the degree of the top arithmetic Todd class of an arithmetic twisted Hilbert modular surface. This quantity is then related to the arithmetic volume of a Shimura curve, via the arithmetic Grothendieck-Riemann-Roch theorem and the Jacquet-Langlands correspondence.

Details

ISSN :
00018708 and 10902082
Volume :
329
Database :
OpenAIRE
Journal :
Advances in Mathematics
Accession number :
edsair.doi.dedup.....bd76fdc4631944345aacbec6c4119b1e
Full Text :
https://doi.org/10.1016/j.aim.2018.01.025