62 results on '"Whitten P"'
Search Results
2. An AI Architecture with the Capability to Explain Recognition Results
- Author
-
Whitten, Paul, Wolff, Francis, and Papachristou, Chris
- Subjects
Computer Science - Machine Learning - Abstract
Explainability is needed to establish confidence in machine learning results. Some explainable methods take a post hoc approach to explain the weights of machine learning models, others highlight areas of the input contributing to decisions. These methods do not adequately explain decisions, in plain terms. Explainable property-based systems have been shown to provide explanations in plain terms, however, they have not performed as well as leading unexplainable machine learning methods. This research focuses on the importance of metrics to explainability and contributes two methods yielding performance gains. The first method introduces a combination of explainable and unexplainable flows, proposing a metric to characterize explainability of a decision. The second method compares classic metrics for estimating the effectiveness of neural networks in the system, posing a new metric as the leading performer. Results from the new methods and examples from handwritten datasets are presented.
- Published
- 2024
- Full Text
- View/download PDF
3. The human factor: results of a small-angle scattering data analysis Round Robin
- Author
-
Pauw, Brian R., Smales, Glen J., Anker, Andy S., Balazs, Daniel M., Beyer, Frederick L., Bienert, Ralf, Bouwman, Wim G., Breßler, Ingo, Breternitz, Joachim, Brok, Erik S, Bryant, Gary, Clulow, Andrew J., Crater, Erin R., De Geuser, Frédéric, Del Giudice, Alessandra, Deumer, Jérôme, Disch, Sabrina, Dutt, Shankar, Frank, Kilian, Fratini, Emiliano, Gilbert, Elliot P., Hahn, Marc Benjamin, Hallett, James, Hohenschutz, Max, Hollamby, Martin, Huband, Steven, Ilavsky, Jan, Jochum, Johanna K., Juelsholt, Mikkel, Mansel, Bradley W., Penttilä, Paavo, Pittkowski, Rebecca K., Portale, Giuseppe, Pozzo, Lilo D., Garcia, Paulo Ricardo de Abreu Furtado, Rochels, Leonhard, Rosalie, Julian M., Saloga, Patrick E. J., Seibt, Susanne, Smith, Andrew J., Smith, Gregory N., Annadurai, Venkatasamy, Spiering, Glenn A., Stawski, Tomasz M., Taché, Olivier, Thünemann, Andreas F., Toth, Kristof, Whitten, Andrew E., and Wuttke, Joachim
- Subjects
Physics - Data Analysis, Statistics and Probability ,Condensed Matter - Materials Science ,Physics - Applied Physics - Abstract
A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44% and 86% respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed., Comment: 23 pages, 10 figures. For the original information sent to RR participants, see https://zenodo.org/record/7506365 . For the anonymized results and Jupyter notebook for analysis, see https://zenodo.org/record/7509710
- Published
- 2023
4. Correction of Residual Errors in Configuration Interaction Electronic Structure Calculations
- Author
-
Whitten, Jerry L.
- Subjects
Physics - Chemical Physics - Abstract
Methods for correcting residual energy errors of configuration interaction (CI) calculations of molecules and other electronic systems are discussed based on the assumption that the energy defect can be mapped onto atomic regions. The methods do not consider the detailed nature of excitations, but instead define a defect energy per electron that that is unique to a specific atom. Defect energy contributions are determined from calculations on diatomic and hydride molecules and then applied to other systems. Calculated energies are compared with experimental thermodynamic and spectroscopic data for a set of forty-one mainly organic molecules representing a wide range of bonding environments. The most stringent test is based on a severely truncated virtual space in which higher spherical harmonic basis functions are removed. The errors of the initial CI calculations are large, but in each case, including defect corrections brings calculated CI energies into agreement with experimental values. The method is also applied to a NIST compilation of coupled-cluster calculations that employ a larger basis set and no truncation of the virtual space. The corrections show excellent consistency with total energies in very good agreement with experimental values. An extension of the method is applied to dmsn states of Sc, Ti, V, Mn, Cr, Fe, Co, Ni and Cu, significantly improving the agreement of calculated transition energies with spectroscopic values., Comment: 27 pages, 2 figures
- Published
- 2022
- Full Text
- View/download PDF
5. Geologic context of the bright MARSIS reflectors in Ultimi Scopuli, South Polar Layered Deposits, Mars
- Author
-
Landis, M. E. and Whitten, J. L.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Physics - Geophysics - Abstract
Radar-bright basal reflectors have been detected below the South Polar Layered Deposits (SPLD), Mars using Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) data and have an exciting but controversial interpretation: liquid water from subglacial lakes. We mapped the surface of the SPLD immediately above and surrounding the putative lakes (1:2M map scale) in order to provide geologic context for interpretation of the bright basal reflectors. We use THEMIS daytime IR (100 m/pixel), CTX (6 m/pixel), and HiRISE (25 cm/pixel) data to characterize geologic units and typical surface roughness. We find evidence for multiple geologic units with features due to CO2 and aeolian-related processes. We do not find evidence for surface modification linked to the postulated lake locations. This is not consistent with the interpretation of the MARSIS basal radar reflector as subglacial lakes., Comment: 29 pages, 2 figures (main paper), 4 (supplement), accepted 4/29/2022 at Geophysical Research Letters
- Published
- 2022
- Full Text
- View/download PDF
6. Trajectory Planning with Deep Reinforcement Learning in High-Level Action Spaces
- Author
-
Williams, Kyle R., Schlossman, Rachel, Whitten, Daniel, Ingram, Joe, Musuvathy, Srideep, Patel, Anirudh, Pagan, James, Williams, Kyle A., Green, Sam, Mazumdar, Anirban, and Parish, Julie
- Subjects
Electrical Engineering and Systems Science - Systems and Control - Abstract
This paper presents a technique for trajectory planning based on continuously parameterized high-level actions (motion primitives) of variable duration. This technique leverages deep reinforcement learning (Deep RL) to formulate a policy which is suitable for real-time implementation. There is no separation of motion primitive generation and trajectory planning: each individual short-horizon motion is formed during the Deep RL training to achieve the full-horizon objective. Effectiveness of the technique is demonstrated numerically on a well-studied trajectory generation problem and a planning problem on a known obstacle-rich map. This paper also develops a new loss function term for policy-gradient-based Deep RL, which is analogous to an anti-windup mechanism in feedback control. We demonstrate the inclusion of this new term in the underlying optimization increases the average policy return in our numerical example.
- Published
- 2021
- Full Text
- View/download PDF
7. Data Release 2 of S-PLUS: accurate template-fitting based photometry covering $\sim$1000 square degrees in 12 optical filters
- Author
-
Almeida-Fernandes, F., Sampedro, L., Herpich, F. R., Molino, A., Barbosa, C. E., Buzzo, M. L., Overzier, R. A., de Lima, E. V. R., Nakazono, L. M. I., Schwarz, G. B. Oliveira, Perottoni, H. D., Bolutavicius, G. F., Gutiérrez-Soto, L. A., Santos-Silva, T., Vitorelli, A. Z., Werle, A., Whitten, D. D., Duarte, M. V. Costa, Bom, C. R., Coelho, P., Sodré Jr., L., Placco, V. M., Teixeira, G. S. M., Alonso-García, J., Beers, T. C., Kanaan, A., Ribeiro, T., Schoenell, W., and de Oliveira, C. Mendes
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
The Southern Photometric Local Universe Survey (S-PLUS) is an ongoing survey of $\sim$9300 deg$^2$ in the southern sky in a 12-band photometric system. This paper presents the second data release (DR2) of S-PLUS, consisting of 514 tiles covering an area of 950 deg$^2$. The data has been fully calibrated using a new photometric calibration technique suitable for the new generation of wide-field multi-filter surveys. This technique consists of a $\chi^2$ minimisation to fit synthetic stellar templates to already calibrated data from other surveys, eliminating the need for standard stars and reducing the survey duration by $\sim$15\%. We compare the template-predicted and S-PLUS instrumental magnitudes to derive the photometric zero-points (ZPs). We show that these ZPs can be further refined by fitting the stellar templates to the 12 S-PLUS magnitudes, which better constrain the models by adding the narrow-band information. We use the STRIPE82 region to estimate ZP errors, which are $\lesssim10$ mmags for filters J0410, J0430, $g$, J0515, $r$, J0660, $i$, J0861 and $z$; $\lesssim 15$ mmags for filter J0378; and $\lesssim 25$ mmags for filters $u$ and J0395. We describe the complete data flow of the S-PLUS/DR2 from observations to the final catalogues and present a brief characterisation of the data. We show that, for a minimum signal-to-noise threshold of 3, the photometric depths of the DR2 range from 19.9 mag to 21.3 mag (measured in Petrosian apertures), depending on the filter. The S-PLUS DR2 can be accessed from the website: https://splus.cloud}{https://splus.cloud., Comment: 29 pages, 26 figures, 7 tables
- Published
- 2021
- Full Text
- View/download PDF
8. The Photometric Metallicity and Carbon Distributions of the Milky Way's Halo and Solar Neighborhood from S-PLUS Observations of SDSS Stripe 82
- Author
-
Whitten, Devin D., Placco, Vinicius M., Beers, Timothy C., An, Deokkeun, Lee, Young Sun, Almeida-Fernandes, Felipe, Herpich, Fabio R., Daflon, Simone, Barbosa, Carlos E., Perottoni, Helio D., Rossi, Silvia, Tissera, Patricia B., Yoon, Jinmi, Youakim, Kris, Schoenell, William, Ribeiro, Tiago, and Kanaan, Antonio
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We report photometric estimates of effective temperature, $T_{\rm eff}$, metallicity, [Fe/H], carbonicity, [C/Fe], and absolute carbon abundances, $A{\rm (C)}$, for over 700,000 stars from the Southern Photometric Local Universe Survey (S-PLUS) Data Release 2, covering a substantial fraction of the equatorial Sloan Digital Sky Survey Stripe 82. We present an analysis for two stellar populations: 1) halo main-sequence turnoff stars and 2) K-dwarf stars of mass $0.58 < M/M_{\odot} <0.75$ in the Solar Neighborhood. Application of the Stellar Photometric Index Network Explorer (SPHINX) to the mixed-bandwidth (narrow- plus wide-band) filter photometry from S-PLUS produces robust estimates of the metallicities and carbon abundances in stellar atmospheres over a wide range of temperature, $4250 < T_{\rm eff} \textrm{(K)} < 7000$. The use of multiple narrow-band S-PLUS filters enables SPHINX to achieve substantially lower levels of "catastrophic failures" (large offsets in metallicity estimates relative to spectroscopic determinations) than previous efforts using a single metallicity-sensitive narrow-band filter. We constrain the exponential slope of the Milky Way's K-dwarf halo metallicity distribution function (MDF), $\lambda_{10, \textrm{[Fe/H]}} = 0.85 \pm 0.21$, over the metallicity range $-2.5 < \textrm{[Fe/H]} < -1.0$; the MDF of our local-volume K-dwarf sample is well-represented by a gamma distribution with parameters $\alpha=2.8$ and $\beta=4.2$. S-PLUS photometry obtains absolute carbon abundances with a precision of $\sim 0.35$dex for stars with $T_{\rm eff} < 6500$K. We identify 364 candidate carbon-enhanced metal-poor stars, obtain assignments of these stars into the Yoon-Beers morphological groups in the $A$(C)-[Fe/H] space, and derive the CEMP frequencies., Comment: 27 pages, 14 figures, 3 tables, Accepted for publication in ApJ
- Published
- 2021
- Full Text
- View/download PDF
9. Estimates of electron correlation based on density expansions
- Author
-
Whitten, Jerry L.
- Subjects
Physics - Chemical Physics - Abstract
Methods for estimating the correlation energy of molecules and other electronic systems are discussed based on the assumption that the correlation energy can be partitioned between atomic regions. In one method, the electron density is expanded in terms of atomic contributions using rigorous electron repulsion bounds, and, in a second method, correlation contributions are associated with basis function pairs. The methods do not consider the detailed nature of localized excitations, but instead define a correlation energy per electron factor that that is unique to a specific atom. The correlation factors are basis function dependent and are determined by from configuration interaction calculations on diatomic and hydride molecules. The correlation energy estimates are compared with the results of high-level configuration interaction calculations for a test set of twenty-seven molecules representing a wide range of bonding environments (average error of 2.6%). An extension based on truncated CI calculations in which d- and hydrogen p-type functions are eliminated from the virtual space combined with estimates of dynamical correlation contributions using atomic correlation factors is discussed and applied to the dissociation of several molecules., Comment: 22 pages, 4 figures
- Published
- 2020
- Full Text
- View/download PDF
10. The $R$-Process Alliance: Fourth Data Release from the Search for $r$-Process-Enhanced Stars in the Galactic Halo
- Author
-
Holmbeck, Erika M., Hansen, Terese T., Beers, Timothy C., Placco, Vinicius M., Whitten, Devin D., Rasmussen, Kaitlin C., Roederer, Ian U., Ezzeddine, Rana, Sakari, Charli M., Frebel, Anna, Drout, Maria R., Simon, Joshua D., Thompson, Ian B., Bland-Hawthorn, Joss, Gibson, Brad K., Grebel, Eva K., Kordopatis, Georges, Kunder, Andrea, Melendez, Jorge, Navarro, Julio F., Reid, Warren A., Seabroke, George, Steinmetz, Matthias, Watson, Fred, and Wyse, Rosemary F. G.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
This compilation is the fourth data release from the $R$-Process Alliance (RPA) search for $r$-process-enhanced stars, and the second release based on "snapshot" high-resolution ($R \sim 30,000$) spectra collected with the du Pont 2.5m Telescope. In this data release, we propose a new delineation between the $r$-I and $r$-II stellar classes at $\mathrm{[Eu/Fe]} = +0.7$, instead of the empirically chosen $\mathrm{[Eu/Fe]} = +1.0$ level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the $r$-I stars, [Eu/Fe] $> +0.3$. Redefining the separation between $r$-I and $r$-II stars will aid in analysis of the possible progenitors of these two classes of stars and whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified $r$-II and $r$-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new $r$-II, 111 new $r$-I (plus three re-identified), and 7 new (plus one re-identified) limited-$r$ stars out of a total of 232 target stars, resulting in a total sample of 72 new $r$-II stars, 232 new $r$-I stars, and 42 new limited-$r$ stars identified by the RPA to date., Comment: 17 pages, 7 figures, 6 tables; accepted to ApJS
- Published
- 2020
- Full Text
- View/download PDF
11. The R-Process Alliance: The Peculiar Chemical Abundance Pattern of RAVE J183013.5-455510
- Author
-
Placco, Vinicius M., Santucci, Rafael M., Yuan, Zhen, Mardini, Mohammad K., Holmbeck, Erika M., Wang, Xilu, Surman, Rebecca, Hansen, Terese T., Roederer, Ian U., Beers, Timothy C., Choplin, Arthur, Ji, Alexander P., Ezzeddine, Rana, Frebel, Anna, Sakari, Charli M., Whitten, Devin D., and Zepeda, Joseph
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We report on the spectroscopic analysis of RAVE J183013.5-455510, an extremely metal-poor star, highly enhanced in CNO, and with discernible contributions from the rapid neutron-capture process. There is no evidence of binarity for this object. At [Fe/H]=-3.57, this is one of the lowest metallicity stars currently observed, with 18 measured abundances of neutron-capture elements. The presence of Ba, La, and Ce abundances above the Solar System r-process predictions suggest that there must have been a non-standard source of r-process elements operating at such low metallicities. One plausible explanation is that this enhancement originates from material ejected at unusually fast velocities in a neutron star merger event. We also explore the possibility that the neutron-capture elements were produced during the evolution and explosion of a rotating massive star. In addition, based on comparisons with yields from zero-metallicity faint supernova, we speculate that RAVE J1830-4555 was formed from a gas cloud pre-enriched by both progenitor types. From analysis based on Gaia DR2 measurements, we show that this star has orbital properties similar to the Galactic metal-weak thick-disk stellar population., Comment: Accepted for publication in ApJ
- Published
- 2020
- Full Text
- View/download PDF
12. Identification of a Group III CEMP-no Star in the Dwarf Spheroidal Galaxy Canes Venatici I
- Author
-
Yoon, Jinmi, Whitten, Devin D., Beers, Timothy C., Lee, Young Sun, Masseron, Thomas, and Placco, Vinicius M.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
CEMP-no stars, a subclass of carbon-enhanced metal-poor (CEMP) stars, are one of the most significant stellar populations in Galactic Archaeology, because they dominate the low end of the metallicity distribution function, providing information on the early star-formation and chemical-evolution history of the Milky Way and its satellite galaxies. Here we present an analysis of medium-resolution ($R \sim 1,800$) optical spectroscopy for a CEMP giant, SDSS J132755.56+333521.7, observed with the Large Binocular Telescope (LBT), one of the brightest ($g \sim 20.5$) members of the classical dwarf spheroidal galaxy, Canes Venatici I (CVn I). Many CEMP stars discovered to date have very cool effective temperatures ($T_{\mathrm{eff}}< 4500$ K), resulting in strong veiling by molecular carbon bands over their optical spectra at low/medium spectral resolution. We introduce a technique to mitigate the carbon-veiling problem to obtain reliable stellar parameters and validate this method with the LBT medium-resolution optical spectra of the ultra metal-poor ([Fe/H] = $-4.0$) CEMP-no dwarf, G 77-61, and seven additional very cool CEMP stars, which have published high-resolution spectroscopic parameters. We apply this technique to the LBT spectrum of SDSS J132755.56+333521.7. We find that this star is well-described with parameters $T_{\mathrm{eff}}=4530$ K, log $g=$ 0.7, [Fe/H] $ = -3.38$, and absolute carbon abundance $A$(C) = 7.23, indicating that it is likely the first Group III CEMP-no star identified in CVn I. The Group III identification of this star suggests that it is a member of the extremely metal-poor population in CVn I, which may have been accreted into its halo., Comment: 18 pages, 3 tables, 9 figures, accepted to the Astrophysical Journal (with minor revisions made after the referee's report)
- Published
- 2019
- Full Text
- View/download PDF
13. Dynamical Relics of the Ancient Galactic Halo
- Author
-
Yuan, Zhen, Myeong, G. C., Beers, Timothy C., Evans, N. Wyn, Lee, Young Sun, Banerjee, Projjwal, Gudin, Dmitrii, Hattori, Kohei, Li, Haining, Matsuno, Tadafumi, Placco, Vinicius M., Smith, M. C., Whitten, Devin D., and Zhao, Gang
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We search for dynamical substructures in the LAMOST DR3 very metal-poor (VMP) star catalog. After cross-matching with Gaia DR2, there are 3300 VMP stars with available high-quality astrometric information that have halo-like kinematics. We apply a method based on self-organizing maps to find groups clustered in the 4D space of orbital energy and angular momentum. We identify 57 dynamically tagged groups, which we label DTG-1 to DTG-57. Most of them belong to existing substructures in the nearby halo, such as the $Gaia$ Sausage or Sequoia. The stream identified by Helmi et al. is recovered, but the two disjoint portions of the substructure have distinct dynamical properties. The very retrograde substructure Rg5 found previously by Myeong et al. is also retrieved. We report 6 new DTGs with highly retrograde orbits, 2 with very prograde orbits, and 12 with polar orbits. By mapping other datasets (APOGEE halo stars, and catalogs of r-process-enhanced and CEMP stars) onto the trained neuron map, we can associate stars with detailed chemical abundances to the DTGs, and look for associations with chemically peculiar stars. The highly eccentric $Gaia$ Sausage groups contain representatives both of debris from the satellite itself (which is $\alpha$-poor) and the Splashed Disk, sent up into eccentric halo orbits from the encounter (and is $\alpha$-rich). The new prograde substructures also appear to be associated with the Splashed Disk. The DTGs belonging to the $Gaia$ Sausage host two relatively metal-rich $r$-II stars and six CEMP stars in different sub-classes, consistent with the idea that the $Gaia$ Sausage progenitor is a massive dwarf galaxy. Rg5 is dynamically associated with two highly $r$-process-enhanced stars with [Fe/H] $\sim -$3. This finding indicates that its progenitor might be an ultra-faint dwarf galaxy that has experienced $r$-process enrichment from neutron star mergers., Comment: ApJ, submitted
- Published
- 2019
- Full Text
- View/download PDF
14. Constraints on the Galactic Inner Halo Assembly History from the Age Gradient of Blue Horizontal-branch Stars
- Author
-
Whitten, Devin D., Beers, Timothy C., Placco, Vinicius M., Santucci, Rafael M., Denissenkov, Pavel, Tissera, Patricia B., Mejías, Andrea, Hernitschek, Nina, and Carollo, Daniela
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We present an analysis of the relative age distribution of the Milky Way halo, based on samples of blue horizontal-branch (BHB) stars obtained from the Panoramic Survey Telescope and Rapid Response System and \textit{Galaxy Evolution Explorer} photometry, as well a Sloan Digital Sky Survey spectroscopic sample. A machine-learning approach to the selection of BHB stars is developed, using support vector classification, with which we produce chronographic age maps of the Milky Way halo out to 40\,kpc from the Galactic center. We identify a characteristic break in the relative age profiles of our BHB samples, corresponding to a Galactocentric radius of $R_{\rm{GC}} \sim 14$\,kpc. Within the break radius, we find an age gradient of $-63.4 \pm 8.2$ Myr kpc$^{-1}$, which is significantly steeper than obtained by previous studies that did not discern between the inner- and outer-halo regions. The gradient in the relative age profile and the break radius signatures persist after correcting for the influence of metallicity on our spectroscopic calibration sample. We conclude that neither are due to the previously recognized metallicity gradient in the halo, as one passes from the inner-halo to the outer-halo region. Our results are consistent with a dissipational formation of the inner-halo population, involving a few relatively massive progenitor satellites, such as those proposed to account for the assembly of \textit{Gaia}-Enceladus, which then merged with the inner halo of the Milky Way., Comment: 13 figures
- Published
- 2019
- Full Text
- View/download PDF
15. Prediction of many-electron wavefunctions using atomic potentials: extended basis sets and molecular dissociation
- Author
-
Whitten, Jerry L.
- Subjects
Physics - Chemical Physics - Abstract
A one-electron Schroedinger equation based on special one-electron potentials for atoms is shown to exist that produces orbitals for an arbitrary molecule that are sufficiently accurate to be used without modification to construct single- and multi-determinant wavefunctions. The exact Hamiltonian is used to calculate the energy variationally and to generate configuration interaction expansions. Earlier work on equilibrium geometries is extended to larger basis sets and molecular dissociation. For a test set of molecules representing different bonding environments, a single set of invariant atomic potentials gives wavefunctions with energies that deviate from configuration interaction energies based on SCF orbitals by less than 0.04 eV per bond or valence electron pair. On a single diagonalization of the Fock matrix, the corresponding errors are reduced 0.01 eV. Atomization energies are also in good agreement with CI values based on canonical SCF orbitals. Configuration interaction applications to single bond dissociations of water and glycine, and multiple bond dissociations of ethylene and oxygen produce dissociation energy curves in close agreement with CI calculations based on canonical SCF orbitals for the entire range of internuclear distances.
- Published
- 2019
- Full Text
- View/download PDF
16. J-PLUS: photometric calibration of large area multi-filter surveys with stellar and white dwarf loci
- Author
-
López-Sanjuan, C., Varela, J., Cristóbal-Hornillos, D., Ramió, H. Vázquez, Carrasco, J. M., Tremblay, P. -E., Whitten, D. D., Placco, V. M., Marín-Franch, A., Cenarro, A. J., Ederoclite, A., Alfaro, E., Coelho, P. R. T., Jiménez-Esteban, F. M., Jiménez-Teja, Y., Apellániz, J. Maíz, Sobral, D., Vílchez, J. M., Alcaniz, J., Angulo, R. E., Dupke, R. A., Hernández-Monteagudo, C., de Oliveira, C. L. Mendes, Moles, M., and Sodré Jr, L.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We present the photometric calibration of the twelve optical passbands observed by the Javalambre Photometric Local Universe Survey (J-PLUS). The proposed calibration method has four steps: (i) definition of a high-quality set of calibration stars using Gaia information and available 3D dust maps; (ii) anchoring of the J-PLUS gri passbands to the Pan-STARRS photometric solution, accounting for the variation of the calibration with the position of the sources on the CCD; (iii) homogenization of the photometry in the other nine J-PLUS filters using the dust de-reddened instrumental stellar locus in (X - r) versus (g - i) colours, where X is the filter to calibrate. The zero point variation along the CCD in these filters was estimated with the distance to the stellar locus. Finally, (iv) the absolute colour calibration was obtained with the white dwarf locus. We performed a joint Bayesian modelling of eleven J-PLUS colour-colour diagrams using the theoretical white dwarf locus as reference. This provides the needed offsets to transform instrumental magnitudes to calibrated magnitudes outside the atmosphere. The uncertainty of the J-PLUS photometric calibration, estimated from duplicated objects observed in adjacent pointings and accounting for the absolute colour and flux calibration errors, are ~19 mmag in u, J0378 and J0395, ~11 mmag in J0410 and J0430, and ~8 mmag in g, J0515, r, J0660, i, J0861, and z. We present an optimized calibration method for the large area multi-filter J-PLUS project, reaching 1-2% accuracy within an area of 1 022 square degrees without the need for long observing calibration campaigns or constant atmospheric monitoring. The proposed method will be adapted for the photometric calibration of J-PAS, that will observe several thousand square degrees with 56 narrow optical filters., Comment: Submitted to Astronomy and Astrophysics. 14 figures, 5 tables. Comments are welcome. Extra information about the photometry update can be found at www.j-plus.es/datareleases/dr1_swdl_calibration
- Published
- 2019
- Full Text
- View/download PDF
17. The Southern Photometric Local Universe Survey (S-PLUS): improved SEDs, morphologies and redshifts with 12 optical filters
- Author
-
de Oliveira, C. Mendes, Ribeiro, T., Schoenell, W., Kanaan, A., Overzier, R. A., Molino, A., Sampedro, L., Coelho, P., Barbosa, C. E., Cortesi, A., Costa-Duarte, M. V., Herpich, F. R., Hernandez-Jimenez, J. A., Placco, V. M., Xavier, H. S., Abramo, L. R., Saito, R. K., Chies-Santos, A. L., Ederoclite, A., de Oliveira, R. Lopes, Gonçalves, D. R., Akras, S., Almeida, L. A., Almeida-Fernandes, F., Beers, T. C., Bonatto, C., Bonoli, S., Cypriano, E. S., de Lima, Erik V. R., de Souza, R. S., de Souza, G. Fabiano, Ferrari, F., Gonçalves, T. S., Gonzalez, A. H., Gutiérrez-Soto, L. A., Hartmann, E. A., Jaffe, Y., Kerber, L. O., Lima-Dias, C., Lopes, P. A. A., Menendez-Delmestre, K., Nakazono, L. M. I., Novais, P. M., Ortega-Minakata, R. A., Pereira, E. S., Perottoni, H. D., Queiroz, C., Reis, R. R. R., Santos, W. A., Santos-Silva, T., Santucci, R. M., Barbosa, C. L., Siffert, B. B., Sodré Jr., L., Torres-Flores, S., Westera, P., Whitten, D. D., Alcaniz, J. S., Alonso-García, Javier, Alencar, S., Alvarez-Candal, A., Amram, P., Azanha, L., Barbá, R. H., Bernardinelli, P. H., Fernandes, M. Borges, Branco, V., Brito-Silva, D., Buzzo, M. L., Caffer, J., Campillay, A., Cano, Z., Carvano, J. M., Castejon, M., Fernandes, R. Cid, Dantas, M. L. L., Daflon, S., Damke, G., de la Reza, R., de Azevedo, L. J. de Melo, De Paula, D. F., Diem, K. G., Donnerstein, R., Dors, O. L., Dupke, R., Eikenberry, S., Escudero, Carlos G., Faifer, Favio R., Farías, H., Fernandes, B., Fernandes, C., Fontes, S., Galarza, A., Hirata, N. S. T., Katena, L., Gregorio-Hetem, J., Hernández-Fernández, J. D., Izzo, L., Arancibia, M. Jaque, Jatenco-Pereira, V., Jiménez-Teja, Y., Kann, D. A., Krabbe, A. C., Labayru, C., Lazzaro, D., Neto, G. B. Lima, Lopes, Amanda R., Magalhães, R., Makler, M., de Menezes, R., Miralda-Escudé, J., Monteiro-Oliveira, R., Montero-Dorta, A. D., Muñoz-Elgueta, N., Nemmen, R. S., Castellón, J. L. Nilo, Oliveira, A. S., Ortíz, D., Pattaro, E., Pereira, C. B., Quint, B., Riguccini, L., Pinto, H. J. Rocha, Rodrigues, I., Roig, F., Rossi, S., Saha, Kanak, Santos, R., Müller, A. Schnorr, Sesto, Leandro A., Silva, R., Castelli, Analía V. Smith, Teixeira, Ramachrisna, Telles, E., de Souza, R. C. Thom, Thöne, C., Trevisan, M., Postigo, A. de Ugarte, Urrutia-Viscarra, F., Veiga, C. H., Vika, M., Vitorelli, A. Z., Werle, A., Werner, S. V., and Zaritsky, D.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
The Southern Photometric Local Universe Survey (S-PLUS) is imaging ~9300 deg^2 of the celestial sphere in twelve optical bands using a dedicated 0.8 m robotic telescope, the T80-South, at the Cerro Tololo Inter-American Observatory, Chile. The telescope is equipped with a 9.2k by 9.2k e2v detector with 10 um pixels, resulting in a field-of-view of 2 deg^2 with a plate scale of 0.55"/pixel. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (8000 deg^2 at |b| > 30 deg) and two areas of the Galactic plane and bulge (for an additional 1300 deg^2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 u, g, r, i, z broad-band filters and 7 narrow-band filters centered on prominent stellar spectral features: the Balmer jump/[OII], Ca H+K, H-delta, G-band, Mg b triplet, H-alpha, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (delta_z/(1+z) = 0.02 or better) for galaxies with r < 20 AB mag and redshift < 0.5, thus producing a 3D map of the local Universe over a volume of more than 1 (Gpc/h)^3. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ~336 deg^2 of the Stripe-82 area, which is available at http://datalab.noao.edu/splus., Comment: Updated to reflect the published version (MNRAS, 489, 241). For a short introductory video of the S-PLUS project, see https://youtu.be/yc5kHrHU9Jk - The S-PLUS Data Release 1 is available at http://datalab.noao.edu/splus
- Published
- 2019
- Full Text
- View/download PDF
18. Origin of the CEMP-no Group Morphology in the Milky Way
- Author
-
Yoon, Jinmi, Beers, Timothy C., Tian, Di, and Whitten, Devin D.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
The elemental-abundance signatures of the very first stars are imprinted on the atmospheres of CEMP-no stars, as various evidence suggests they are bona-fide second-generation stars. It has recently been recognized that the CEMP-no stars can be sub-divided into at least two groups, based on their distinct morphology in the $A$(C)-[Fe/H] space, indicating the likely existence of multiple pathways for their formation. In this work, we compare the halo CEMP-no group morphology with that of stars found in satellite dwarf galaxies of the Milky Way -- a very similar $A$(C)-[Fe/H] pattern is found, providing clear evidence that halo CEMP-no stars were indeed accreted from their host mini-halos, similar in nature to those that formed in presently observed ultra-faint dwarfs (UFDs) and dwarf spheroidal (dSph) galaxies. We also infer that the previously noted "anomalous" CEMP-no halo stars (with high $A$(C) and low [Ba/Fe] ratios) that otherwise would be associated with Group I may have the same origin as the Group III CEMP-no halo stars, by analogy with the location of several Group III CEMP-no stars in the UFDs and dSphs and their distinct separation from that of the CEMP-$s$ stars in the $A$(Ba)-$A$(C) space. Interestingly, CEMP-no stars associated with UFDs include both Group II and Group III stars, while the more massive dSphs appear to have only Group II stars. We conclude that understanding the origin of the CEMP-no halo stars requires knowledge of the masses of their parent mini-halos, which is related to the amount of carbon dilution prior to star formation, in addition to the nature of their nucleosynthetic origin., Comment: 13 pages, 3 figures, and 1 table, accepted for publication in the Astrophysical Journal with minor changes
- Published
- 2019
- Full Text
- View/download PDF
19. The R-Process Alliance: Spectroscopic Follow-up of Low-Metallicity Star Candidates from the Best & Brightest Survey
- Author
-
Placco, Vinicius M., Santucci, Rafael M., Beers, Timothy C., Chaname, Julio, Sepulveda, Maria Paz, Coronado, Johanna, Rossi, Silvia, Lee, Young Sun, Starkenburg, Else, Youakim, Kris, Barrientos, Manuel, Ezzeddine, Rana, Frebel, Anna, Hansen, Terese T., Holmbeck, Erika M., Ji, Alexander P., Rasmussen, Kaitlin C., Roederer, Ian U., Sakari, Charli M., and Whitten, Devin D.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
We present results from an observing campaign to identify low-metallicity stars in the Best & Brightest Survey. From medium-resolution (R ~ 1, 200 - 2, 000) spectroscopy of 857 candidates, we estimate the stellar atmospheric parameters (Teff, log g, and [Fe/H]), as well as carbon and alpha-element abundances. We find that 69% of the observed stars have [Fe/H] <= -1.0, 39% have [Fe/H] <= -2.0, and 2% have [Fe/H] <= -3.0. There are also 133 carbon-enhanced metal-poor (CEMP) stars in this sample, with 97 CEMP Group I and 36 CEMP Group II stars identified in the A(C) versus [Fe/H] diagram. A subset of the confirmed low-metallicity stars were followed-up with high-resolution spectroscopy, as part of the R-process Alliance, with the goal of identifying new highly and moderately r-process-enhanced stars. Comparison between the stellar atmospheric parameters estimated in this work and from high-resolution spectroscopy exhibit good agreement, confirming our expectation that medium-resolution observing campaigns are an effective way of selecting interesting stars for further, more targeted, efforts., Comment: 57 pages, accepted for publication in ApJ
- Published
- 2018
- Full Text
- View/download PDF
20. J-PLUS: Identification of low-metallicity stars with artificial neural networks using SPHINX
- Author
-
Whitten, D. D., Placco, V. M., Beers, T. C., Chies-Santos, A. L., Bonatto, C., Varela, J., Cristóbal-Hornillos, D., Ederoclite, A., Masseron, T., Lee, Y. S., Akras, S., Fernandes, M. Borges, Caballero, J. A., Cenarro, A. J., Coelho, P., Costa-Duarte, M. V., Daflon, S., Dupke, R. A., de Oliveira, R. Lopes, López-Sanjuan, C., Marín-Franch, A., de Oliveira, C. Mendes, Moles, M., Orsi, A. A., Rossi, S., Sodré, L., and Ramió, H. Vázquez
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We present a new methodology for the estimation of stellar atmospheric parameters from narrow- and intermediate-band photometry of the Javalambre Photometric Local Universe Survey (J-PLUS), and propose a method for target pre-selection of low-metallicity stars for follow-up spectroscopic studies. Photometric metallicity estimates for stars in the globular cluster M15 are determined using this method. By development of a neural-network-based photometry pipeline, we aim to produce estimates of effective temperature, $T_{\rm eff}$, and metallicity, [Fe/H], for a large subset of stars in the J-PLUS footprint. The Stellar Photometric Index Network Explorer, SPHINX, is developed to produce estimates of $T_{\rm eff}$ and [Fe/H], after training on a combination of J-PLUS photometric inputs and synthetic magnitudes computed for medium-resolution (R ~ 2000) spectra of the Sloan Digital Sky Survey. This methodology is applied to J-PLUS photometry of the globular cluster M15. Effective temperature estimates made with J-PLUS Early Data Release photometry exhibit low scatter, \sigma($T_{\rm eff}$) = 91 K, over the temperature range 4500 < $T_{\rm eff}$ (K) < 8500. For stars from the J-PLUS First Data Release with 4500 < $T_{\rm eff}$ (K) < 6200, 85 $\pm$ 3% of stars known to have [Fe/H] <-2.0 are recovered by SPHINX. A mean metallicity of [Fe/H]=-2.32 $\pm$ 0.01, with a residual spread of 0.3 dex, is determined for M15 using J-PLUS photometry of 664 likely cluster members. We confirm the performance of SPHINX within the ranges specified, and verify its utility as a stand-alone tool for photometric estimation of effective temperature and metallicity, and for pre-selection of metal-poor spectroscopic targets., Comment: 18 pages, 12 figures
- Published
- 2018
- Full Text
- View/download PDF
21. Prediction of many-electron wavefunctions using atomic potentials: refinements and extensions to transition metals and large systems
- Author
-
Whitten, Jerry L.
- Subjects
Physics - Chemical Physics ,Quantum Physics - Abstract
For a given many-electron molecule, it is possible to define a corresponding one-electron Schr\"odinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single- and multi-determinant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Transferable potentials for first-row atoms and transition metal oxides that can be used without modification in different molecules are reported. For improved accuracy, molecular wavefunctions can be refined by slightly scaling nuclear charges and by introducing potentials optimized for functional groups. For a test set of 20 molecules representing different bonding environments, the transferable potentials with scaling give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.05 eV and 0.02 eV per bond or valence electron pair, respectively. Applications to the ground and excited states of a Ti18O36 nanoparticle and chlorophyll-s are reported., Comment: 20 pages. arXiv admin note: text overlap with arXiv:1702.06852
- Published
- 2018
- Full Text
- View/download PDF
22. Method for including static correlation in molecules
- Author
-
Whitten, Jerry L.
- Subjects
Physics - Chemical Physics - Abstract
New ways to treat electron correlation in electronic structure problems are discussed in the context of many-electron theory. The present work focuses primarily on static correlation. In related work, a method for including dynamical correlation effects is described. The overlap density of two basis functions i, j and the associated density matrix is a signature of bond formation and can be used to define a local molecular orbital, i + j. The total electron density \r{ho} can be written in terms of densities derived from these two-center orbitals and residual one-center terms. In the interaction of total densities, the self-energy terms resulting from an average field (Hartree-Fock) Hamiltonian are allowed to respond to an explicit inclusion of electron repulsion by mixing (i + j)1(i + j)2 +{\lambda}(i - j)1(i - j)2 . The energy lowering weighted by the density matrix ij approximates this contribution to the correlation energy of the system. Numerical calculations for a set of 20 molecules representing different bonding environments are reported and results are compared with configuration interaction calculations using the same molecular orbital basis. Calculations on chlorin, N4C20H16, are reported as an example of how the method could be used in an embedding treatment of a large system., Comment: 12 pages including two tables and two figures
- Published
- 2018
23. Spectroscopic Validation of Low-Metallicity Stars from RAVE
- Author
-
Placco, Vinicius M., Beers, Timothy C., Santucci, Rafael M., Chaname, Julio, Sepulveda, Maria Paz, Coronado, Johanna, Points, Sean D., Kaleida, Catherine C., Rossi, Silvia, Kordopatis, Georges, Lee, Young Sun, Matijevic, Gal, Frebel, Anna, Hansen, Terese T., Holmbeck, Erika M., Rasmussen, Kaitlin C., Roederer, Ian U., Sakari, Charli M., and Whitten, Devin D.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We present results from a medium-resolution (R ~ 2, 000) spectroscopic follow-up campaign of 1,694 bright (V < 13.5), very metal-poor star candidates from the RAdial Velocity Experiment (RAVE). Initial selection of the low-metallicity targets was based on the stellar parameters published in RAVE Data Releases 4 and 5. Follow-up was accomplished with the Gemini-N and Gemini-S, the ESO/NTT, the KPNO/Mayall, and the SOAR telescopes. The wavelength coverage for most of the observed spectra allows for the determination of carbon and {\alpha}-element abundances, which are crucial for con- sidering the nature and frequency of the carbon-enhanced metal-poor (CEMP) stars in this sample. We find that 88% of the observed stars have [Fe/H] <= -1.0, 61% have [Fe/H] <= -2.0, and 3% have [Fe/H] <= -3.0 (with four stars at [Fe/H] <= -3.5). There are 306 CEMP star candidates in this sample, and we identify 169 CEMP Group I, 131 CEMP Group II, and 6 CEMP Group III stars from the A(C) vs. [Fe/H] diagram. Inspection of the [alpha/C] abundance ratios reveals that five of the CEMP Group II stars can be classified as "mono-enriched second-generation" stars. Gaia DR1 matches were found for 734 stars, and we show that transverse velocities can be used as a confirmatory selection criteria for low-metallicity candidates. Selected stars from our validated list are being followed-up with high-resolution spectroscopy, to reveal their full chemical abundance patterns for further studies., Comment: 134 pages, accepted for publication in AJ
- Published
- 2018
- Full Text
- View/download PDF
24. J-PLUS: Morphological star/galaxy classification by PDF analysis
- Author
-
López-Sanjuan, C., Ramió, H. Vázquez, Varela, J., Spinoso, D., Angulo, R. E., Muniesa, D., Viironen, K., Cristóbal-Hornillos, D., Cenarro, A. J., Ederoclite, A., Marín-Franch, A., Moles, M., Ascaso, B., Bonoli, S., Chies-Santos, A. L., Coelho, P. R. T., Costa-Duarte, M. V., Cortesi, A., Díaz-García, L. A., Dupke, R. A., Galbany, L., Hernández-Monteagudo, C., Logroño-García, R., Molino, A., Orsi, A., Placco, V. M., Sampedro, L., Roman, I. San, Vilella-Rojo, G., Whitten, D. D., de Oliveira, C. L. Mendes, and Sodré Jr, L.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Our goal is to morphologically classify the sources identified in the images of the J-PLUS early data release (EDR) into compact (stars) or extended (galaxies) using a suited Bayesian classifier. J-PLUS sources exhibit two distinct populations in the r-band magnitude vs. concentration plane, corresponding to compact and extended sources. We modelled the two-population distribution with a skewed Gaussian for compact objects and a log-normal function for the extended ones. The derived model and the number density prior based on J-PLUS EDR data were used to estimate the Bayesian probability of a source to be star or galaxy. This procedure was applied pointing-by-pointing to account for varying observing conditions and sky position. Finally, we combined the morphological information from g, r, and i broad bands in order to improve the classification of low signal-to-noise sources. The derived probabilities are used to compute the pointing-by-pointing number counts of stars and galaxies. The former increases as we approach to the Milky Way disk, and the latter are similar across the probed area. The comparison with SDSS in the common regions is satisfactory up to r ~ 21, with consistent numbers of stars and galaxies, and consistent distributions in concentration and (g - i) colour spaces. We implement a morphological star/galaxy classifier based on PDF analysis, providing meaningful probabilities for J-PLUS sources to one magnitude deeper (r ~ 21) than a classical boolean classification. These probabilities are suited for the statistical study of 150k stars and 101k galaxies with 15 < r < 21 present in the 31.7 deg2 of the J-PLUS EDR. In a future version of the classifier, we will include J-PLUS colour information from twelve photometric bands., Comment: Submitted to Astronomy and Astrophysics. 14 pages, 16 figures, 1 tables. Comments are welcome. All extra figures and the number counts files will be available with the paper in press
- Published
- 2018
- Full Text
- View/download PDF
25. J-PLUS: The Javalambre Photometric Local Universe Survey
- Author
-
Cenarro, A. J., Moles, M., Cristóbal-Hornillos, D., Marín-Franch, A., Ederoclite, A., Varela, J., López-Sanjuan, C., Hernández-Monteagudo, C., Angulo, R. E., Ramió, H. Vázquez, Viironen, K., Bonoli, S., Orsi, A. A., Hurier, G., Roman, I. San, Greisel, N., Vilella-Rojo, G., Díaz-García, L. A., Logroño-García, R., Gurung-López, S., Spinoso, D., Izquierdo-Villalba, D., Aguerri, J. A. L., Prieto, C. Allende, Bonatto, C., Carvano, J. M., Chies-Santos, A. L., Daflon, S., Dupke, R. A., Falcón-Barroso, J., Gonçalves, D. R., Jiménez-Teja, Y., Molino, A., Placco, V. M., Solano, E., Whitten, D. D., Abril, J., Antón, J. L., Bello, R., de Toledo, S. Bielsa, Castillo-Ramírez, J., Chueca, S., Civera, T., Díaz-Martín, M. C., Domínguez-Martínez, M., Garzarán-Calderaro, J., Hernández-Fuertes, J., Iglesias-Marzoa, R., Iñiguez, C., Ruiz, J. M. Jiménez, Kruuse, K., Lamadrid, J. L., Lasso-Cabrera, N., López-Alegre, G., López-Sainz, A., Maícas, N., Moreno-Signes, A., Muniesa, D. J., Rodríguez-Llano, S., Rueda-Teruel, F., Rueda-Teruel, S., Soriano-Laguía, I., Tilve, V., Valdivielso, L., Yanes-Díaz, A., Alcaniz, J. S., de Oliveira, C. Mendes, Sodré, L., Coelho, P., de Oliveira, R. Lopes, Tamm, A., Xavier, H. S., Abramo, L. R., Akras, S., Alfaro, E. J., Alvarez-Candal, A., Ascaso, B., Beasley, M. A., Beers, T. C., Fernandes, M. Borges, Bruzual, G. R., Buzzo, M. L., Carrasco, J. M., Cepa, J., Cortesi, A., Costa-Duarte, M. V., De Prá, M., Favole, G., Galarza, A., Galbany, L., Garcia, K., Delgado, R. M. González, González-Serrano, J. I., Gutiérrez-Soto, L. A., Hernandez-Jimenez, J. A., Kanaan, A., Kuncarayakti, H., Landim, R. C. G., Laur, J., Licandro, J., Neto, G. B. Lima, Lyman, J. D., Apellániz, J. Maíz, Miralda-Escudé, J., Morate, D., Nogueira-Cavalcante, J. P., Novais, P. M., Oncins, M., Oteo, I., Overzier, R. A., Pereira, C. B., Rebassa-Mansergas, A., Reis, R. R. R., Roig, F., Sako, M., Salvador-Rusiñol, N., Sampedro, L., Sánchez-Blázquez, P., Santos, W. A., Schmidtobreick, L., Siffert, B. B., and Telles, E.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
J-PLUS is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrof\'isico de Javalambre. T80Cam is a 2 sq.deg field-of-view camera mounted on this 83cm-diameter telescope, and is equipped with a unique system of filters spanning the entire optical range. This filter system is a combination of broad, medium and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000\AA\ Balmer break region, H$\delta$, Ca H+K, the G-band, the Mgb and Ca triplets) that are key to both characterize stellar types and to deliver a low-resolution photo-spectrum for each pixel of the sky observed. With a typical depth of AB $\sim 21.25$ mag per band, this filter set thus allows for an indiscriminate and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photo-spectral information for all resolved galaxies in the local universe, as well as accurate photo-z estimates ($\Delta\,z\sim 0.01-0.03$) for moderately bright (up to $r\sim 20$ mag) extragalactic sources. While some narrow band filters are designed for the study of particular emission features ([OII]/$\lambda$3727, H$\alpha$/$\lambda$6563) up to $z < 0.015$, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby universe (Milky Way, 2D IFU-like studies, stellar populations of nearby and moderate redshift galaxies, clusters of galaxies) and at high redshifts (ELGs at $z\approx 0.77, 2.2$ and $4.4$, QSOs, etc). With this paper, we release $\sim 36$ sq.deg of J-PLUS data, containing about $1.5\times 10^5$ stars and $10^5$ galaxies at $r<21$ mag., Comment: Submitted to A&A
- Published
- 2018
- Full Text
- View/download PDF
26. Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis
- Author
-
Drout, M. R., Piro, A. L., Shappee, B. J., Kilpatrick, C. D., Simon, J. D., Contreras, C., Coulter, D. A., Foley, R. J., Siebert, M. R., Morrell, N., Boutsia, K., Di Mille, F., Holoien, T. W. -S., Kasen, D., Kollmeier, J. A., Madore, B. F., Monson, A. J., Murguia-Berthier, A., Pan, Y. -C., Prochaska, J. X., Ramirez-Ruiz, E., Rest, A., Adams, C., Alatalo, K., Bañados, E., Baughman, J., Beers, T. C., Bernstein, R. A., Bitsakis, T., Campillay, A., Hansen, T. T., Higgs, C. R., Ji, A. P., Maravelias, G., Marshall, J. L., Bidin, C. Moni, Prieto, J. L., Rasmussen, K. C., Rojas-Bravo, C., Strom, A. L., Ulloa, N., Vargas-González, J., Wan, Z., and Whitten, D. D.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
On 2017 August 17, gravitational waves were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical and infrared light curves of SSS17a extending from 10.9 hours to 18 days post-merger. We constrain the radioactively-powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in r-process nucleosynthesis in the Universe., Comment: Accepted to Science
- Published
- 2017
- Full Text
- View/download PDF
27. Prediction of many-electron wavefunctions using atomic potentials
- Author
-
Nazari, Fariba and Whitten, Jerry L.
- Subjects
Physics - Chemical Physics - Abstract
For a given many-electron molecule, it is possible to define a corresponding one-electron Schr\"odinger equation, using potentials derived from simple atomic densities, whose solution predicts fairly accurate molecular orbitals for single- and multi-determinant wavefunctions for the molecule. The energy is not predicted and must be evaluated by calculating Coulomb and exchange interactions over the predicted orbitals. Potentials are found by minimizing the energy of predicted wavefunctions. There exist slightly less accurate average potentials for first-row atoms that can be used without modification in different molecules. For a test set of molecules representing different bonding environments, these average potentials give wavefunctions with energies that deviate from exact self-consistent field or configuration interaction energies by less than 0.08 eV and 0.03 eV per bond or valence electron pair, respectively., Comment: 14 pages
- Published
- 2017
- Full Text
- View/download PDF
28. Electron correlation by polarization of interacting densities
- Author
-
Whitten, Jerry L.
- Subjects
Physics - Chemical Physics - Abstract
Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus . A method of avoiding redundancy is described. Applications to atoms, negative ions and molecules representing different types of bonding and spin states are discussed.
- Published
- 2016
- Full Text
- View/download PDF
29. The Detector System of The Daya Bay Reactor Neutrino Experiment
- Author
-
An, F. P., Bai, J. Z., Balantekin, A. B., Band, H. R., Beavis, D., Beriguete, W., Bishai, M., Blyth, S., Brown, R. L., Butorov, I., Cao, D., Cao, G. F., Cao, J., Carr, R., Cen, W. R., Chan, W. T., Chan, Y. L., Chang, J. F., Chang, L. C., Chang, Y., Chasman, C., Chen, H. Y., Chen, H. S., Chen, M. J., Chen, Q. Y., Chen, S. J., Chen, S. M., Chen, X. C., Chen, X. H., Chen, X. S., Chen, Y. X., Chen, Y., Cheng, J. H., Cheng, J., Cheng, Y. P., Cherwinka, J. J., Chidzik, S., Chow, K., Chu, M. C., Cummings, J. P., de Arcos, J., Deng, Z. Y., Ding, X. F., Ding, Y. Y., Diwan, M. V., Dong, L., Dove, J., Draeger, E., Du, X. F., Dwyer, D. A., Edwards, W. R., Ely, S. R., Fang, S. D., Fu, J. Y., Fu, Z. W., Ge, L. Q., Ghazikhanian, V., Gill, R., Goett, J., Gonchar, M., Gong, G. H., Gong, H., Gornushkin, Y. A., Grassi, M., Greenler, L. S., Gu, W. Q., Guan, M. Y., Guo, R. P., Guo, X. H., Hackenburg, R. W., Hahn, R. L., Han, R., Hans, S., He, M., He, Q., He, W. S., Heeger, K. M., Heng, Y. K., Higuera, A., Hinrichs, P., Ho, T. H., Hoff, M., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, L. M., Hu, L. J., Hu, T., Hu, W., Huang, E. C., Huang, H. Z., Huang, H. X., Huang, P. W., Huang, X., Huang, X. T., Huber, P., Hussain, G., Isvan, Z., Jaffe, D. E., Jaffke, P., Jen, K. L., Jetter, S., Ji, X. P., Ji, X. L., Jiang, H. J., Jiang, W. Q., Jiao, J. B., Johnson, R. A., Joseph, J., Kang, L., Kettell, S. H., Kohn, S., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Lai, C. Y., Lai, W. C., Lai, W. H., Langford, T. J., Lau, K., Lebanowski, L., Lee, J., Lee, M. K. P., Lei, R. T., Leitner, R., Leung, J. K. C., Leung, K. Y., Lewis, C. A., Li, B., Li, C., Li, D. J., Li, F., Li, G. S., Li, J., Li, N. Y., Li, Q. J., Li, S. F., Li, S. C., Li, W. D., Li, X. B., Li, X. N., Li, X. Q., Li, Y., Li, Y. F., Li, Z. B., Liang, H., Liang, J., Lin, C. J., Lin, G. L., Lin, P. Y., Lin, S. X., Lin, S. K., Lin, Y. C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, B. J., Liu, C., Liu, D. W., Liu, H., Liu, J. L., Liu, J. C., Liu, S., Liu, S. S., Liu, X., Liu, Y. B., Lu, C., Lu, H. Q., Lu, J. S., Luk, A., Luk, K. B., Luo, T., Luo, X. L., Ma, L. H., Ma, Q. M., Ma, X. Y., Ma, X. B., Ma, Y. Q., Mayes, B., McDonald, K. T., McFarlane, M. C., McKeown, R. D., Meng, Y., Mitchell, I., Mohapatra, D., Kebwaro, J. Monari, Morgan, J. E., Nakajima, Y., Napolitano, J., Naumov, D., Naumova, E., Newsom, C., Ngai, H. Y., Ngai, W. K., Nie, Y. B., Ning, Z., Ochoa-Ricoux, J. P., Olshevskiy, A., Pagac, A., Pan, H. -R., Patton, S., Pearson, C., Pec, V., Peng, J. C., Piilonen, L. E., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Ren, B., Ren, J., Rosero, R., Roskovec, B., Ruan, X. C., Sands III, W. R., Seilhan, B., Shao, B. B., Shih, K., Song, W. Y., Steiner, H., Stoler, P., Stuart, M., Sun, G. X., Sun, J. L., Tagg, N., Tam, Y. H., Tanaka, H. K., Tang, W., Tang, X., Taychenachev, D., Themann, H., Torun, Y., Trentalange, S., Tsai, O., Tsang, K. V., Tsang, R. H. M., Tull, C. E., Tung, Y. C., Viaux, N., Viren, B., Virostek, S., Vorobel, V., Wang, C. H., Wang, L. S., Wang, L. Y., Wang, L. Z., Wang, M., Wang, N. Y., Wang, R. G., Wang, T., Wang, W., Wang, W. W., Wang, X. T., Wang, X., Wang, Y. F., Wang, Z., Wang, Z. M., Webber, D. M., Wei, H. Y., Wei, Y. D., Wen, L. J., Wenman, D. L., Whisnant, K., White, C. G., Whitehead, L., Whitten Jr., C. A., Wilhelmi, J., Wise, T., Wong, H. C., Wong, H. L. H., Wong, J., Wong, S. C. F., Worcester, E., Wu, F. F., Wu, Q., Xia, D. M., Xia, J. K., Xiang, S. T., Xiao, Q., Xing, Z. Z., Xu, G., Xu, J. Y., Xu, J. L., Xu, J., Xu, W., Xu, Y., Xue, T., Yan, J., Yang, C. G., Yang, L., Yang, M. S., Yang, M. T., Ye, M., Yeh, M., Yeh, Y. S., Yip, K., Young, B. L., Yu, G. Y., Yu, Z. Y., Zeng, S., Zhan, L., Zhang, C., Zhang, F. H., Zhang, H. H., Zhang, J. W., Zhang, K., Zhang, Q. X., Zhang, Q. M., Zhang, S. H., Zhang, X. T., Zhang, Y. C., Zhang, Y. H., Zhang, Y. M., Zhang, Y. X., Zhang, Z. J., Zhang, Z. Y., Zhang, Z. P., Zhao, J., Zhao, Q. W., Zhao, Y. F., Zhao, Y. B., Zheng, L., Zhong, W. L., Zhou, L., Zhou, N., Zhou, Z. Y., Zhuang, H. L., Zimmerman, S., and Zou, J. H.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar{\nu}_e$ oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of $\rm{sin}^22\theta_{13}$ and the effective mass splitting $\Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes (PMTs), the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking., Comment: 52 pages, 51 figures
- Published
- 2015
- Full Text
- View/download PDF
30. Measurement of Charge Multiplicity Asymmetry Correlations in High Energy Nucleus-Nucleus Collisions at 200 GeV
- Author
-
STAR Collaboration, Adamczyk, L., Adkins, J. K., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anson, C. D., Arkhipkin, D., Aschenauer, E., Averichev, G. S., Balewski, J., Banerjee, A., Barnovska, Z., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Brandin, A. V., Brovko, S. G., Bruna, E., Bültmann, S., Bunzarov, I., Burton, T. P., Butterworth, J., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chang, Z., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Chwastowski, J., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Das, S., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., de Souza, R. Derradi, Dhamija, S., Didenko, L., Ding, F., Dion, A., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fazio, S., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Flores, E., Gagliardi, C. A., Gangadharan, D. R., Garand, D., Geurts, F., Gibson, A., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, A., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Huck, P., Humanic, T. J., Igo, G., Jacobs, W. W., Jena, C., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kesich, A., Kikola, D. P., Kiryluk, J., Kisel, I., Kisiel, A., Kizka, V., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kulakov, I., Kumar, L., Lamont, M. A. C., Landgraf, J. M., Landry, K. D., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Luo, X., Luszczak, A., Ma, G. L., Ma, Y. G., Don, D. M. M. D. Madagodagettige, Mahapatra, D. P., Majka, R., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nelson, J. M., Nogach, L. V., Novak, J., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Ostrowski, P., Pachr, M., Page, B. S., Pal, S. K., Pan, Y. X., Pandit, Y., Panebratsev, Y., Pawlak, T., Pawlik, B., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Poljak, N., Porter, J., Powell, C. B., Pruthi, N. K., Przybycien, M., Pujahari, P. R., Putschke, J., Qiu, H., Ramachandran, S., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ross, J. F., Ruan, L., Rusnak, J., Sahoo, N. R., Sahu, P. K., Sakrejda, I., Salur, S., Sandacz, A., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmidke, B., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Selyuzhenkov, I., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, D., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Turnau, J., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Videbæk, F., Viyogi, Y. P., Vokal, S., Vossen, A., Wada, M., Wang, F., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Wu, Y. F., Xiao, Z., Xie, W., Xin, K., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, L., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhang, J. B., Zhang, S., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., Zoulkarneeva, Y., and Zyzak, M.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at 200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, $\Delta$, between the like- and unlike-sign up/down $-$ left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic $v^{\rm obs}_{2}$), where $\Delta=(1.3\pm1.4({\rm stat})^{+4.0}_{-1.0}({\rm syst}))\times10^{-5}+(3.2\pm0.2({\rm stat})^{+0.4}_{-0.3}({\rm syst}))\times10^{-3}v^{\rm obs}_{2}$ for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed., Comment: 27 pages, 25 figures, 2 tables
- Published
- 2013
- Full Text
- View/download PDF
31. Validation of techniques to mitigate copper surface contamination in CUORE
- Author
-
Alessandria, F., Ardito, R., Artusa, D. R., Avignone III, F. T., Azzolini, O., Balata, M., Banks, T. I., Bari, G., Beeman, J., Bellini, F., Bersani, A., Biassoni, M., Bloxham, T., Brofferio, C., Bucci, C., Cai, X. Z., Canonica, L., Capelli, S., Carbone, L., Cardani, L., Carrettoni, M., Casali, N., Chott, N., Clemenza, M., Cosmelli, C., Cremonesi, O., Creswick, R. J., Dafinei, I., Dally, A., Datskov, V., De Biasi, A., Deninno, M. M., Di Domizio, S., di Vacri, M. L., Ejzak, L., Faccini, R., Fang, D. Q., Farach, H. A., Ferri, E., Ferroni, F., Fiorini, E., Franceschi, M. A., Freedman, S. J., Fujikawa, B. K., Giachero, A., Gironi, L., Giuliani, A., Goett, J., Goodsell, A., Gorla, P., Gotti, C., Guardincerri, E., Gutierrez, T. D., Haller, E. E., Han, K., Heeger, K. M., Huang, H. Z., Kadel, R., Kazkaz, K., Keppel, G., Kogler, L., Kolomensky, Yu. G., Lenz, D., Li, Y. L., Ligi, C., Liu, X., Ma, Y. G., Maiano, C., Maino, M., Martinez, M., Maruyama, R. H., Mei, Y., Moggi, N., Morganti, S., Napolitano, T., Newman, S., Nisi, S., Nones, C., Norman, E. B., Nucciotti, A., Orio, F., Orlandi, D., Ouellet, J. L., Pallavicini, M., Palmieri, V., Pattavina, L., Pavan, M., Pedretti, M., Pessina, G., Pirro, S., Previtali, E., Rampazzo, V., Reil, R., Rimondi, F., Rosenfeld, C., Rusconi, C., Sangiorgio, S., Scielzo, N. D., Sisti, M., Smith, A. R., Sparks, L., Stivanello, F., Taffarello, L., Tenconi, M., Tian, W. D., Tomei, C., Trentalange, S., Ventura, G., Vignati, M., Wang, B. S., Wang, H. W., Whitten Jr, C. A., Wise, T., Woodcraft, A., Zanotti, L., Zarra, C., Zhu, B. X., and Zucchelli, S.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
In this article we describe the background challenges for the CUORE experiment posed by surface contamination of inert detector materials such as copper, and present three techniques explored to mitigate these backgrounds. Using data from a dedicated test apparatus constructed to validate and compare these techniques we demonstrate that copper surface contamination levels better than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit on the number of background counts in the region of interest is 0.02-0.03 counts/keV/kg/y depending on the adopted mitigation technique., Comment: 10 pages, 6 figures, 6 tables
- Published
- 2012
- Full Text
- View/download PDF
32. Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals
- Author
-
The Cuore Collaboration, Alessandria, F., Ardito, R., Artusa, D. R., Avignone III, F. T., Azzolini, O., Balata, M., Banks, T. I., Bari, G., Beeman, J., Bellini, F., Bersani, A., Biassoni, M., Bloxham, T., Brofferio, C., Bucci, C., Cai, X. Z., Canonica, L., Capelli, S., Carbone, L., Cardani, L., Carrettoni, M., Casali, N., Chott, N., Clemenza, M., Cosmelli, C., Cremonesi, O., Creswick, R. J., Dafinei, I., Dally, A., Datskov, V., De Biasi, A., Decowski, M. P., Deninno, M. M., Di Domizio, S., di Vacri, M. L., Ejzak, L., Faccini, R., Fang, D. Q., Farach, H. A., Ferri, E., Ferroni, F., Fiorini, E., Franceschi, M. A., Freedman, S. J., Fujikawa, B. K., Giachero, A., Gironi, L., Giuliani, A., Goett, J., Gorla, P., Gotti, C., Guardincerri, E., Gutierrez, T. D., Haller, E. E., Han, K., Heeger, K. M., Huang, H. Z., Kadel, R., Kazkaz, K., Keppel, G., Kogler, L., Kolomensky, Yu. G., Lenz, D., Li, Y. L., Ligi, C., Liu, X., Ma, Y. G., Maiano, C., Maino, M., Martinez, M., Maruyama, R. H., Moggi, N., Morganti, S., Napolitano, T., Newman, S., Nisi, S., Nones, C., Norman, E. B., Nucciotti, A., Orio, F., Orlandi, D., Ouellet, J. L., Pallavicini, M., Palmieri, V., Pattavina, L., Pavan, M., Pedretti, M., Pessina, G., Pirro, S., Previtali, E., Rampazzo, V., Rimondi, F., Rosenfeld, C., Rusconi, C., Sangiorgio, S., Scielzo, N. D., Sisti, M., Smith, A. R., Taffarello, L., Tenconi, M., Tian, W. D., Tomei, C., Trentalange, S., Ventura, G., Vignati, M., Wang, B. S., Wang, H. W., Whitten Jr., C. A., Wise, T., Woodcraft, A., Zanotti, L., Zarra, C., Zhu, B. X., and Zucchelli, S.
- Subjects
High Energy Physics - Experiment - Abstract
We report the results of a search for axions from the 14.4 keV M1 transition from Fe-57 in the core of the sun using the axio-electric effect in TeO2 bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made using a newly developed low energy trigger which was optimized to reduce the detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the flavor-singlet axial vector matrix element. Bounds are given for the interval 0.15 < S < 0.55., Comment: 14 pages, 6 figures, submitted to JCAP
- Published
- 2012
33. The low energy spectrum of TeO2 bolometers: results and dark matter perspectives for the CUORE-0 and CUORE experiments
- Author
-
Alessandria, F., Ardito, R., Artusa, D. R., Avignone III, F. T., Azzolini, O., Balata, M., Banks, T. I., Bari, G., Beeman, J., Bellini, F., Bersani, A., Biassoni, M., Bloxham, T., Brofferio, C., Bucci, C., Cai, X. Z., Canonica, L., Capelli, S., Carbone, L., Cardani, L., Carrettoni, M., Casali, N., Chott, N., Clemenza, M., Cosmelli, C., Cremonesi, O., Creswick, R. J., Dafinei, I., Dally, A., Datskov, V., De Biasi, A., Decowski, M. P., Deninno, M. M., Di Domizio, S., di Vacri, M. L., Ejzak, L., Faccini, R., Fang, D. Q., Farach, H. A., Ferri, E., Ferroni, F., Fiorini, E., Franceschi, M. A., Freedman, S. J., Frossati, G., Fujikawa, B. K., Giachero, A., Gironi, L., Giuliani, A., Goett, J. J., Gorla, P., Gotti, C., Guardincerri, E., Gutierrez, T. D., Haller, E. E., Han, K., Heeger, K. M., Huang, H. Z., Kadel, R., Kazkaz, K., Keppel, G., Kogler, L., Kolomensky, Yu. G., Lenz, D., Li, Y. L., Ligi, C., Liu, X., Ma, Y. G., Maiano, C., Maino, M., Martinez, M., Maruyama, R. H., Moggi, N., Morganti, S., Napolitano, T., Newman, S., Nisi, S., Nones, C., Norman, E. B., Nucciotti, A., Orio, F., Orlandi, D., Ouellet, J. L., Pallavicini, M., Palmieri, V., Pattavina, L., Pavan, M., Pedretti, M., Pessina, G., Pirro, S., Previtali, E., Rampazzo, V., Rimondi, F., Rosenfeld, C., Rusconi, C., Sangiorgio, S., Scielzo, N. D., Sisti, M., Smith, A. R., Stivanello, F., Taffarello, L., Tenconi, M., Tian, W. D., Tomei, C., Trentalange, S., Ventura, G., Vignati, M., Wang, B. S., Wang, H. W., Whitten Jr., C. A., Wise, y T., Woodcraft, A., Zanotti, L., Zarra, C., Zhu, B. X., and Zucchelli, S.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Cosmology and Extragalactic Astrophysics ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We collected 19.4 days of data from four 750 g TeO2 bolometers, and in three of them we were able to set the energy threshold around 3 keV using a new analysis technique. We found a background rate ranging from 25 cpd/keV/kg at 3 keV to 2 cpd/keV/kg at 25 keV, and a peak at 4.7 keV. The origin of this peak is presently unknown, but its presence is confirmed by a reanalysis of 62.7 kg.days of data from the finished CUORICINO experiment. Finally, we report the expected sensitivities of the CUORE0 (52 bolometers) and CUORE (988 bolometers) experiments to a WIMP annual modulation signal., Comment: 9 pages, 10 figures
- Published
- 2012
- Full Text
- View/download PDF
34. Single Spin Asymmetry $A_N$ in Polarized Proton-Proton Elastic Scattering at $\sqrt{s}=200$ GeV
- Author
-
STAR Collaboration, Adamczyk, L., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anson, C. D., Arkhipkin, D., Aschenauer, E., Averichev, G. S., Balewski, J., Banerjee, A., Barnovska, Z., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Brandin, A. V., Brovko, S. G., Bruna, E., Bültmann, S., Bunzarov, I., Burton, T. P., Butterworth, J., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chang, Z., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Chwastowski, J., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Das, S., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., de Souza, R. Derradi, Dhamija, S., Didenko, L., Ding, F., Dion, A., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fazio, S., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Gibson, A., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Huck, P., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kesich, A., Kikola, D. P., Kiryluk, J., Kisel, I., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kulakov, I., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Luo, X., Luszczak, A., Ma, G. L., Ma, Y. G., Don, D. M. M. D. Madagodagettige, Mahapatra, D. P., Majka, R., Mall, O. I., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nelson, J. M., Nogach, L. V., Novak, J., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Ostrowski, P., Pachr, M., Page, B. S., Pal, S. K., Pan, Y. X., Pandit, Y., Panebratsev, Y., Pawlak, T., Pawlik, B., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Powell, C. B., Pruneau, C., Pruthi, N. K., Przybycien, M., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ross, J. F., Ruan, L., Rusnak, J., Sahoo, N. R., Sahu, P. K., Sakrejda, I., Salur, S., Sandacz, A., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmidke, B., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, D., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Turnau, J., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Videbæk, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Vossen, A., Wada, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xin, K., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, Y., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhang, J. B., Zhang, S., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., Zoulkarneeva, Y., and Zyzak, M.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $\sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transfer squared $t$ range $0.003 \leqslant |t| \leqslant 0.035$ $\GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $\sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering., Comment: 12 pages, 6 figures
- Published
- 2012
- Full Text
- View/download PDF
35. Transverse Single-Spin Asymmetry and Cross-Section for pi0 and eta Mesons at Large Feynman-x in Polarized p+p Collisions at sqrt(s)=200 GeV
- Author
-
The STAR Collaboration, Adamczyk, L., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Aschenauer, E., Averichev, G. S., Balewski, J., Bannerjee, A., Barnovska, Z., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Brandin, A. V., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Butterworth, J., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Chwastowski, J., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., de Souza, R. Derradi, Dhamija, S., Didenko, L., Ding, F., Dion, A., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fazio, S., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Huck, P., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kesich, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Luo, X., Luszczak, A., Ma, G. L., Ma, Y. G., Don, D. M. M. D. Madagodagettige, Mahapatra, D. P., Majka, R., Mall, O. I., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Morozov, B., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nogach, L. V., Novak, J., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Ostrowski, P., Pachr, M., Page, B. S., Pal, S. K., Pan, Y. X., Pandit, Y., Panebratsev, Y., Pawlak, T., Pawlik, B., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Przybycien, M., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ross, J. F., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Salur, S., Sandacz, A., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmidke, B., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, D., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trainor, T. A., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Turnau, J., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Videbaek, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Vossen, A., Wada, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr, C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xin, K., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, Y., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
Measurements of the differential cross-section and the transverse single-spin asymmetry, A_N, vs. x_F for pi0 and eta mesons are reported for 0.4 < x_F < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb^{-1} was analyzed, which was recorded during p+p collisions at sqrt{s} = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross-section for pi0 is consistent with a perturbative QCD prediction, and the eta/pi0 cross-section ratio agrees with previous mid-rapidity measurements. For 0.55 < x_F < 0.75, A_N for eta (0.210 +- 0.056) is 2.2 standard deviations larger than A_N for pi0 (0.081 +- 0.016)., Comment: 7 pages, 5 figures, Submitted to Phys. Rev. D R.C
- Published
- 2012
- Full Text
- View/download PDF
36. Longitudinal and transverse spin asymmetries for inclusive jet production at mid-rapidity in polarized p+p collisions at sqrt{s}=200 GeV
- Author
-
The STAR Collaboration, Adamczyk, L., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Aschenauer, E., Averichev, G. S., Balewski, J., Banerjee, A., Barnovska, Z., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Brandin, A. V., Bridgeman, A., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Butterworth, J., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Chwastowski, J., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., de Souza, R. Derradi, Dhamija, S., Didenko, L., Ding, F., Dion, A., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fazio, S., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Huck, P., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kesich, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kowalik, K., Kravtsov, P., Krueger, K., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Luo, X., Luszczak, A., Ma, G. L., Ma, Y. G., Don, D. M. M. D. Madagodagettige, Mahapatra, D. P., Majka, R., Mall, O. I., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Millane, J., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nogach, L. V., Novak, J., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Ostrowski, P., Pachr, M., Page, B. S., Pal, S. K., Pan, Y. X., Pandit, Y., Panebratsev, Y., Pawlak, T., Pawlik, B., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Przybycien, M., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ross, J. F., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Sakuma, T., Salur, S., Sandacz, A., Sandweiss, J., Sangaline, E., Sarkar, A., Sarsour, M., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmidke, B., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, D., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Staszak, D., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trainor, T. A., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Turnau, J., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Videbæk, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Vossen, A., Wada, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xin, K., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, Y., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment - Abstract
We report STAR measurements of the longitudinal double-spin asymmetry A_LL, the transverse single-spin asymmetry A_N, and the transverse double-spin asymmetries A_Sigma and A_TT for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt{s} = 200 GeV. The data represent integrated luminosities of 7.6 /pb with longitudinal polarization and 1.8 /pb with transverse polarization, with 50-55% beam polarization, and were recorded in 2005 and 2006. No evidence is found for the existence of statistically significant jet A_N, A_Sigma, or A_TT at mid-rapidity. Recent model calculations indicate the A_N results may provide new limits on the gluon Sivers distribution in the proton. The asymmetry A_LL significantly improves the knowledge of gluon polarization in the nucleon., Comment: 18 pages, 16 figures, 8 tables
- Published
- 2012
37. Measurements of $D^{0}$ and $D^{*}$ Production in $p$ + $p$ Collisions at $\sqrt{s}$ = 200 GeV
- Author
-
STAR Collaboration, Adamczyk, L., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Aschenauer, E., Averichev, G. S., Balewski, J., Banerjee, A., Barnovska, Z., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Brandin, A. V., Brovko, S. G., Bruna, E., Bültmann, S., Bunzarov, I., Burton, T. P., Butterworth, J., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chang, Z., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Chwastowski, J., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., de Souza, R. Derradi, Dhamija, S., Didenko, L., Ding, F., Dion, A., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fazio, S., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Gibson, A., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Huck, P., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kesich, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisel, I., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Luo, X., Luszczak, A., Ma, G. L., Ma, Y. G., Don, D. M. M. D. Madagodagettige, Mahapatra, D. P., Majka, R., Mall, O. I., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nelson, J. M., Nogach, L. V., Novak, J., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Ostrowski, P., Pachr, M., Page, B. S., Pal, S. K., Pan, Y. X., Pandit, Y., Panebratsev, Y., Pawlak, T., Pawlik, B., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Przybycien, M., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ross, J. F., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Salur, S., Sandacz, A., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmidke, B., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, D., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trainor, T. A., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Turnau, J., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Videbæk, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Vossen, A., Wada, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xin, K., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, Y., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., Zoulkarneeva, Y., and Zyzak, M.
- Subjects
Nuclear Experiment - Abstract
We report measurements of charmed-hadron ($D^{0}$, $D^{*}$) production cross sections at mid-rapidity in $p$ + $p$ collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays $D^{0}\rightarrow K^{-}\pi^{+}$, $D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+}$ and their charge conjugates, covering the $p_T$ range of 0.6$-$2.0 GeV/$c$ and 2.0$-$6.0 GeV/$c$ for $D^{0}$ and $D^{*+}$, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is $d\sigma/dy|_{y=0}^{c\bar{c}}$ = 170 $\pm$ 45 (stat.) $^{+38}_{-59}$ (sys.) $\mu$b. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation., Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev. D
- Published
- 2012
- Full Text
- View/download PDF
38. Di-electron spectrum at mid-rapidity in $p+p$ collisions at $\sqrt{s} = 200$ GeV
- Author
-
Adamczyk, L., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Aschenauer, E., Averichev, G. S., Balewski, J., Banerjee, A., Barnovska, Z., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Brandin, A. V., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Butterworth, J., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chang, Z., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Chwastowski, J., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., de Souza, R. Derradi, Dhamija, S., Didenko, L., Ding, F., Dion, A., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fazio, S., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Gibson, A., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Huck, P., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kesich, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisel, I., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kulakov, Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Luo, X., Luszczak, A., Ma, G. L., Ma, Y. G., Don, D. M. M. D. Madagodagettige, Mahapatra, D. P., Majka, R., Mall, O. I., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nelson, J. M., Nogach, L. V., Novak, J., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Ostrowski, P., Pachr, M., Page, B. S., Pal, S. K., Pan, Y. X., Pandit, Y., Panebratsev, Y., Pawlak, T., Pawlik, B., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Przybycien, M., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ross, J. F., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Salur, S., Sandacz, A., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmidke, B., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, D., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trainor, T. A., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Turnau, J., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Videbæk, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Vossen, A., Wada, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xin, K., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, Y., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., Zoulkarneeva, Y., and Zyzak, M.
- Subjects
Nuclear Experiment - Abstract
We report on mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via $e^{+}e^{-}$ decays, from $\sqrt{s} = 200$ GeV $p+p$ collisions, measured by the large acceptance experiment STAR at RHIC. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted $\omega\rightarrow e^{+}e^{-}$ invariant yields are consistent with previous measurements. The mid-rapidity yields ($dN/dy$) of $\phi$ and $J/\psi$ are extracted through their di-electron decay channels and are consistent with the previous measurements of $\phi\rightarrow K^{+}K^{-}$ and $J/\psi\rightarrow e^{+}e^{-}$. Our results suggest a new upper limit of the branching ratio of the $\eta \rightarrow e^{+}e^{-}$ of $1.7\times10^{-5}$ at 90% confidence level., Comment: 15 pages, 17 figures, 4 tables. Published
- Published
- 2012
- Full Text
- View/download PDF
39. Observation of electron-antineutrino disappearance at Daya Bay
- Author
-
An, F. P., Bai, J. Z., Balantekin, A. B., Band, H. R., Beavis, D., Beriguete, W., Bishai, M., Blyth, S., Boddy, K., Brown, R. L., Cai, B., Cao, G. F., Cao, J., Carr, R., Chan, W. T., Chang, J. F., Chang, Y., Chasman, C., Chen, H. S., Chen, H. Y., Chen, S. J., Chen, S. M., Chen, X. C., Chen, X. H., Chen, X. S., Chen, Y., Chen, Y. X., Cherwinka, J. J., Chu, M. C., Cummings, J. P., Deng, Z. Y., Ding, Y. Y., Diwan, M. V., Dong, L., Draeger, E., Du, X. F., Dwyer, D. A., Edwards, W. R., Ely, S. R., Fang, S. D., Fu, J. Y., Fu, Z. W., Ge, L. Q., Ghazikhanian, V., Gill, R. L., Goett, J., Gonchar, M., Gong, G. H., Gong, H., Gornushkin, Y. A., Greenler, L. S., Gu, W. Q., Guan, M. Y., Guo, X. H., Hackenburg, R. W., Hahn, R. L., Hans, S., He, M., He, Q., He, W. S., Heeger, K. M., Heng, Y. K., Hinrichs, P., Ho, T. H., Hor, Y. K., Hsiung, Y. B., Hu, B. Z., Hu, T., Huang, H. X., Huang, H. Z., Huang, P. W., Huang, X., Huang, X. T., Huber, P., Isvan, Z., Jaffe, D. E., Jetter, S., Ji, X. L., Ji, X. P., Jiang, H. J., Jiang, W. Q., Jiao, J. B., Johnson, R. A., Kang, L., Kettell, S. H., Kramer, M., Kwan, K. K., Kwok, M. W., Kwok, T., Lai, C. Y., Lai, W. C., Lai, W. H., Lau, K., Lebanowski, L., Lee, J., Lee, M. K. P., Leitner, R., Leung, J. K. C., Leung, K. Y., Lewis, C. A., Li, B., Li, F., Li, G. S., Li, J., Li, Q. J., Li, S. F., Li, W. D., Li, X. B., Li, X. N., Li, X. Q., Li, Y., Li, Z. B., Liang, H., Liang, J., Lin, C. J., Lin, G. L., Lin, S. K., Lin, S. X., Lin, Y. C., Ling, J. J., Link, J. M., Littenberg, L., Littlejohn, B. R., Liu, B. J., Liu, C., Liu, D. W., Liu, H., Liu, J. C., Liu, J. L., Liu, S., Liu, X., Liu, Y. B., Lu, C., Lu, H. Q., Luk, A., Luk, K. B., Luo, T., Luo, X. L., Ma, L. H., Ma, Q. M., Ma, X. B., Ma, X. Y., Ma, Y. Q., Mayes, B., McDonald, K. T., McFarlane, M. C., McKeown, R. D., Meng, Y., Mohapatra, D., Morgan, J. E., Nakajima, Y., Napolitano, J., Naumov, D., Nemchenok, I., Newsom, C., Ngai, H. Y., Ngai, W. K., Nie, Y. B., Ning, Z., Ochoa-Ricoux, J. P., Oh, D., Olshevski, A., Pagac, A., Patton, S., Pearson, C., Pec, V., Peng, J. C., Piilonen, L. E., Pinsky, L., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, X., Raper, N., Rosero, R., Roskovec, B., Ruan, X. C., Seilhan, B., Shao, B. B., Shih, K., Steiner, H., Stoler, P., Sun, G. X., Sun, J. L., Tam, Y. H., Tanaka, H. K., Tang, X., Themann, H., Torun, Y., Trentalange, S., Tsai, O., Tsang, K. V., Tsang, R. H. M., Tull, C., Viren, B., Virostek, S., Vorobel, V., Wang, C. H., Wang, L. S., Wang, L. Y., Wang, L. Z., Wang, M., Wang, N. Y., Wang, R. G., Wang, T., Wang, W., Wang, X., Wang, Y. F., Wang, Z., Wang, Z. M., Webber, D. M., Wei, Y. D., Wen, L. J., Wenman, D. L., Whisnant, K., White, C. G., Whitehead, L., Whitten Jr., C. A., Wilhelmi, J., Wise, T., Wong, H. C., Wong, H. L. H., Wong, J., Worcester, E. T., Wu, F. F., Wu, Q., Xia, D. M., Xiang, S. T., Xiao, Q., Xing, Z. Z., Xu, G., Xu, J., Xu, J. L., Xu, W., Xu, Y., Xue, T., Yang, C. G., Yang, L., Ye, M., Yeh, M., Yeh, Y. S., Yip, K., Young, B. L., Yu, Z. Y., Zhan, L., Zhang, C., Zhang, F. H., Zhang, J. W., Zhang, Q. M., Zhang, K., Zhang, Q. X., Zhang, S. H., Zhang, Y. C., Zhang, Y. H., Zhang, Y. X., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, J., Zhao, Q. W., Zhao, Y. B., Zheng, L., Zhong, W. L., Zhou, L., Zhou, Z. Y., Zhuang, H. L., and Zou, J. H.
- Subjects
High Energy Physics - Experiment - Abstract
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle $\theta_{13}$ with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW$_{\rm th}$ reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43,000 ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is $R=0.940\pm 0.011({\rm stat}) \pm 0.004({\rm syst})$. A rate-only analysis finds $\sin^22\theta_{13}=0.092\pm 0.016({\rm stat})\pm0.005({\rm syst})$ in a three-neutrino framework., Comment: 5 figures. Version to appear in Phys. Rev. Lett
- Published
- 2012
- Full Text
- View/download PDF
40. Measurement of the $W \to e \nu$ and $Z/\gamma^* \to e^+e^-$ Production Cross Sections at Mid-rapidity in Proton-Proton Collisions at $\sqrt{s}$ = 500 GeV
- Author
-
STAR Collaboration, Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Banerjee, Barnovska, Z., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Brandin, A. V., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Butterworth, J., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., de Souza, R. Derradi, Dhamija, S., Didenko, L., Ding, F., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Huck, P., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kesich, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Morozov, B., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nogach, L. V., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pan, Pandit, Y., Panebratsev, Y., Pawlak, T., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Salur, S., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trainor, T. A., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen Jr., J. A., Varma, R., Vasconcelos, G. M. S., Videbæk, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Vossen, A., Wada, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xin, K., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, Y., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., and Zoulkarneeva, Y.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We report measurements of the charge-separated $W^{+(-)} \to e^{+(-)} + \nu_e(\bar{\nu}_e)$ and $Z/\gamma^* \to e^+e^-$ production cross sections at mid-rapidity in proton-proton collisions at $\sqrt{s}$ = 500 GeV. These results are based on 13.2 pb$^{-1}$ of data recorded in 2009 by the STAR detector at RHIC. Production cross sections for W bosons that decay via the $e \nu$ channel were measured to be $\sigma(pp \to W^+ X) \cdot BR(W^+ \to e^+ \nu_e)$ = 117.3 \pm 5.9(stat) \pm 6.2(syst) \pm 15.2(lumi) pb, and $\sigma(pp \to W^- X) \cdot BR(W^- \to e^- \bar{\nu}_e)$ = 43.3 \pm 4.6(stat) \pm 3.4(syst) \pm 5.6(lumi) pb. For $Z/\gamma^*$ production, $\sigma(pp \to Z/\gamma^* X) \cdot BR(Z/\gamma^* \to e^+ e^-)$ = 7.7 \pm 2.1(stat) $^{+0.5}_{-0.9}$(syst) \pm 1.0(lumi) pb for di-lepton invariant masses $m_{e^+e^-}$ between 70 and 110 GeV/$c^2$. First measurements of the W cross section ratio, $\sigma(pp \to W^+ X) / \sigma(pp \to W^- X)$, at $\sqrt{s}$ = 500 GeV are also reported. Theoretical predictions, calculated using recent parton distribution functions, are found to agree with the measured cross sections., Comment: 14 pages, 12 figures, submitted to Physical Review D
- Published
- 2011
- Full Text
- View/download PDF
41. Energy and system-size dependence of two- and four-particle $v_2$ measurements in heavy-ion collisions at RHIC and their implications on flow fluctuations and nonflow
- Author
-
The STAR Collaboration, Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Barnovska, Z., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Brandin, A. V., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Calderon, M., Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., de Souza, R. Derradi, Dhamija, S., Didenko, L., Ding, F., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Ghosh, P., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Huck, P., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kesich, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nogach, L. V., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pan, Pandit, Y., Panebratsev, Y., Pawlak, T., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Redwine, R., Reed, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Salur, S., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, N., Solanki, D., Sorensen, P., de Souza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Videbaek, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Vossen, A., Wada, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, Y., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants $v_2$ ($v_2\{2\}$ and $v_2\{4\}$) for Au+Au and Cu+Cu collisions at center of mass energies $\sqrt{s_{_{\mathrm{NN}}}} = 62.4$ and 200 GeV. The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ is related to $v_{2}$ fluctuations ($\sigma_{v_2}$) and nonflow $(\delta_{2})$. We present an upper limit to $\sigma_{v_2}/v_{2}$. Following the assumption that eccentricity fluctuations $\sigma_{\epsilon}$ dominate $v_2$ fluctuations $\frac{\sigma_{v_2}}{v_2} \approx \frac{\sigma_{\epsilon}}{\epsilon}$ we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with $v_2\{2\}$ and $v_2\{4\}$. We also present results on the ratio of $v_2$ to eccentricity., Comment: 15 pages, 12 Figures
- Published
- 2011
- Full Text
- View/download PDF
42. System size and energy dependence of near-side di-hadron correlations
- Author
-
STAR Collaboration, Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Barnby, L. S., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bombara, M., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Braidot, E., Brandin, A. V., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., Derevschikov, A. A., de Souza, R. Derradi, Dhamija, S., Didenko, L., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunkelberger, L. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Eun, L., Evdokimov, O., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fisyak, Y., Gagliardi, C. A., Gaillard, L., Gangadharan, D. R., Geurts, F., Ghosh, P., Gliske, S., Gorbunov, Y. N., Grebenyuk, O. G., Grosnick, D., Gupta, A., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Horvat, S., Huang, B., Huang, H. Z., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Jones, P. G., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Lukashov, E. V., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Minaev, N. G., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Morozov, D. A., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nattrass, C., Nasim, Md., Nayak, T. K., Nogach, L. V., Nurushev, S. B., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pan, Pandit, Y., Panebratsev, Y., Pawlak, T., Pei, H., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Riley, C. K., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Salur, S., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, B., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Singaraju, R. N., Skoby, M. J., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Vasiliev, A. N., Videbæ, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Vossen, A., Wada, M., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yi, Y., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment - Abstract
Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models., Comment: 17 pages, 14 figures, submitted to Phys. Rev. C
- Published
- 2011
- Full Text
- View/download PDF
43. Directed and elliptic flow of charged particles in Cu+Cu collisions at $\sqrt{\bm {s_{NN}}} =$ 22.4 GeV
- Author
-
Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Beavis, D. R., Behera, N. K., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Braidot, E., Brandin, A. V., Bridgeman, A., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Choi, K. E., Christie, W., Chung, P., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., Derevschikov, A. A., de Souza, R. Derradi, Didenko, L., Djawotho, P., Dogra, S. M., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Estienne, M., Eun, L., Evdokimov, O., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fine, V., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Ghosh, P., Gorbunov, Y. N., Gordon, A., Grebenyuk, O. G., Grosnick, D., Gupta, A., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heinz, M., Heppelmann, S., Hirsch, A., Hjort, E., Hoffmann, G. W., Hofman, D. J., Huang, B., Huang, H. Z., Humanic, T. J., Huo, L., Igo, G., Jacobs, P., Jacobs, W. W., Jena, C., Jin, F., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Knospe, A. G., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kouchpil, V., Kravtsov, P., Krueger, K., Krus, M., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, N., Li, W., Li, X., Li, Y., Li, Z. M., Lima, 1 L. M., Lisa, M. A., Liu, F., Liu, H., Liu, J., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Lukashov, E. V., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Manweiler, R., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Meschanin, A., Milner, R., Minaev, N. G., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Morozov, D. A., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nayak, T. K., Nogach, L. V., Nurushev, S. B., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pandit, Y., Panebratsev, Y., Pawlak, T., Pei, H., Peitzmann, T., Perkins, C., Peryt, W., Pile, P., Planinic, M., Ploskon, M. A., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Potukuchi, B. V. K. S., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Salur, S., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schaub, J., Schmah, A. M., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Selyuzhenkov, I., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Simon, F., Singaraju, R. N., Skoby, M. J., Smirnov, N., Solanki, D., Sorensen, P., deSouza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Subba, N. L., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Vasiliev, A. N., Videbæk, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Wada, M., Walker, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment - Abstract
This paper reports results for directed flow $v_{1}$ and elliptic flow $v_{2}$ of charged particles in Cu+Cu collisions at $\sqrt{s_{NN}}=$ 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4 GeV Cu+Cu collisions the prior observation that $v_1$ is independent of the system size at 62.4 and 200 GeV, and also extend the scaling of $v_1$ with $\eta/y_{\rm beam}$ to this system. The measured $v_2(p_T)$ in Cu+Cu collisions is similar for $\sqrt{s_{NN}} = 22.4-200$ GeV. We also report a comparison with results from transport model (UrQMD and AMPT) calculations. The model results do not agree quantitatively with the measured $v_1(\eta), v_2(p_T)$ and $v_2(\eta)$., Comment: 10 pages,9 figures: Introduction part of the paper is expanded, Fig 9 is changed slightly, more discussion on summary
- Published
- 2011
- Full Text
- View/download PDF
44. Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at $\sqrt{s_{\rm NN}}$ = 62 and 200 GeV
- Author
-
STAR Collaboration, Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Braidot, E., Brandin, A. V., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Calderon, M., Cebra, D., Cendejas, R., Cervantes, M. C., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Christie, W., Chung, P., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Cui, X., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Deng, J., Derevschikov, A. A., de Souza, R. Derradi, Didenko, L., Djawotho, P., Dong, X., Drachenberg, J. L., Draper, J. E., Du, C. M., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Estienne, M., Eun, L., Evdokimov, O., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fine, V., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geurts, F., Ghosh, P., Gorbunov, Y. N., Gordon, A., Grebenyuk, O. G., Grosnick, D., Gupta, A., Gupta, S., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heppelmann, S., Hirsch, A., Hoffmann, G. W., Hofman, D. J., Huang, B., Huang, H. Z., Humanic, T. J., Huo, L., Igo, G., Jacobs, W. W., Jena, C., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kravtsov, P., Krueger, K., Kumar, L., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, W., Li, X., Li, Y., Li, Z. M., Lima, L. M., Lisa, M. A., Liu, F., Ljubicic, T., Llope, W. J., Longacre, R. S., Lu, Y., Lukashov, E. V., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Manweiler, R., Margetis, S., Markert, C., Masui, H., Matis, H. S., McDonald, D., McShane, T. S., Meschanin, A., Milner, R., Minaev, N. G., Mioduszewski, S., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Morozov, D. A., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nasim, Md., Nayak, T. K., Nogach, L. V., Nurushev, S. B., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Oliveira, R. A. N., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pandit, Y., Panebratsev, Y., Pawlak, T., Pei, H., Peitzmann, T., Perkins, C., Peryt, W., Pile, P., Planinic, M., Pluta, J., Plyku, D., Poljak, N., Porter, J., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ruan, L., Rusnak, J., Sahoo, N. R., Sakrejda, I., Salur, S., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schaub, J., Schmah, A. M., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Selyuzhenkov, I., Seyboth, P., Shah, N., Shahaliev, E., Shao, M., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Simon, F., Singaraju, R. N., Skoby, M. J., Smirnov, N., Solanki, D., Sorensen, P., de Souza, U. G., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trainor, T. A., Trentalange, S., Tribble, R. E., Tribedy, P., Trzeciak, B. A., Tsai, O. D., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Vasiliev, A. N., Videbaek, F., Viyogi, Y. P., Vokal, S., Wada, M., Walker, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, F., Zhao, J., Zhong, C., Zhu, X., Zhu, Y. H., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment - Abstract
We present two-dimensional (2D) two-particle angular correlations on relative pseudorapidity $\eta$ and azimuth $\phi$ for charged particles from Au-Au collisions at $\sqrt{s_{\rm NN}} = 62$ and 200 GeV with transverse momentum $p_t \geq 0.15$ GeV/$c$, $|\eta| \leq 1$ and $2\pi$ azimuth. Observed correlations include a {same-side} (relative azimuth $< \pi/2$) 2D peak, a closely-related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until mid-centrality where a transition to a qualitatively different centrality trend occurs within a small centrality interval. Above the transition point the number of same-side and away-side correlated pairs increases rapidly {relative to} binary-collision scaling, the $\eta$ width of the same-side 2D peak also increases rapidly ($\eta$ elongation) and the $\phi$ width actually decreases significantly. Those centrality trends are more remarkable when contrasted with expectations of jet quenching in a dense medium. Observed centrality trends are compared to {\sc hijing} predictions and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy ion collision scenarios which invoke rapid parton thermalization. On the other hand, if the collision system is effectively opaque to few-GeV partons the observations reported here would be inconsistent with a minijet picture., Comment: 26 pages, 8 figures, 2 tables
- Published
- 2011
- Full Text
- View/download PDF
45. CUORE crystal validation runs: results on radioactive contamination and extrapolation to CUORE background
- Author
-
Alessandria, F., Andreotti, E., Ardito, R., Arnaboldi, C., Avignone III, F. T., Balata, M., Bandac, I., Banks, T. I., Bari, G., Beeman, J. W., Bellini, F., Bersani, A., Biassoni, M., Bloxham, T., Brofferio, C., Bryant, A., Bucci, C., Cai, X. Z., Canonica, L., Capelli, S., Carbone, L., Cardani, L., Carrettoni, M., Chott, N., Clemenza, M., Cosmelli, C., Cremonesi, O., Creswick, R. J., Dafinei, I., Dally, A., De Biasi, A., Decowski, M. P., Deninno, M. M., de Waard, A., Di Domizio, S., Ejzak, L., Faccini, R., Fang, D. Q., Farach, H., Ferri, E., Ferroni, F., Fiorini, E., Foggetta, L., Freedman, S., Frossati, G., Giachero, A., Gironi, L., Giuliani, A., Gorla, P., Gotti, C., Guardincerri, E., Gutierrez, T. D., Haller, E. E., Han, K., Heeger, K. M., Huang, H. Z., Ichimura, K., Kadel, R., Kazkaz, K., Keppel, G., Kogler, L., Kolomensky, Y. G., Kraft, S., Lenz, D., Li, Y. L., Liu, X., Longo, E., Ma, Y. G., Maiano, C., Maier, G., Martinez, C., Martinez, M., Maruyama, R. H., Moggi, N., Morganti, S., Newman, S., Nisi, S., Nones, C., Norman, E. B., Nucciotti, A., Orio, F., Orlandi, D., Ouellet, J., Pallavicini, M., Palmieri, V., Pattavina, L., Pavan, M., Pedretti, M., Pessina, G., Pirro, S., Previtali, E., Rampazzo, V., Rimondi, F., Rosenfeld, C., Rusconi, C., Salvioni, C., Sangiorgio, S., Schaeffer, D., Scielzo, N. D., Sisti, M., Smith, A. R., Stivanello, F., Taffarello, L., Terenziani, G., Tian, W. D., Tomei, C., Trentalange, S., Ventura, G., Vignati, M., Wang, B., Wang, H. W., Whitten Jr, C. A., Wise, T., Woodcraft, A., Xu, N., Zanotti, L., Zarra, C., Zhu, B. X., and Zucchelli, S.
- Subjects
Nuclear Experiment - Abstract
The CUORE Crystal Validation Runs (CCVRs) have been carried out since the end of 2008 at the Gran Sasso National Laboratories, in order to test the performances and the radiopurity of the TeO$_2$ crystals produced at SICCAS (Shanghai Institute of Ceramics, Chinese Academy of Sciences) for the CUORE experiment. In this work the results of the first 5 validation runs are presented. Results have been obtained for bulk contaminations and surface contaminations from several nuclides. An extrapolation to the CUORE background has been performed., Comment: 11 pages, 8 figures
- Published
- 2011
- Full Text
- View/download PDF
46. Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV
- Author
-
STAR Collaboration, Agakishiev, H., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Barnby, L. S., Beavis, D. R., Behera, N. K., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Biritz, B., Bland, L. C., Borowski, W., Bouchet, J., Braidot, E., Brandin, A. V., Bridgeman, A., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chajecki, Z., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Choi, K. E., Christie, W., Chung, P., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Dash, S., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Derevschikov, A. A., de Souza, R. Derradi, Didenko, L., Djawotho, P., Dogra, S. M., Dong, X., Drachenberg, J. L., Draper, J. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Estienne, M., Eun, L., Evdokimov, O., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fine, V., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geromitsos, A., Geurts, F., Ghosh, P., Gorbunov, Y. N., Gordon, A., Grebenyuk, O., Grosnick, D., Guertin, S. M., Gupta, A., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heinz, M., Heppelmann, S., Hirsch, A., Hjort, E., Hoffmann, G. W., Hofman, D. J., Huang, B., Huang, H. Z., Humanic, T. J., Huo, L., Igo, G., Jacobs, P., Jacobs, W. W., Jones, P. G., Jena, C., Jin, F., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H., Keane, D., Kechechyan, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Knospe, A. G., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kouchpil, V., Kravtsov, P., Krueger, K., Krus, M., Kumar, L., Kurnadi, P., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, N., Li, W., Li, X., Li, Y., Li, Z. M., Lisa, M. A., Liu, F., Liu, H., Liu, J., Ljubicic, T., Llope, W. J., Longacre, R. S., Love, W. A., Lu, Y., Lukashov, E. V., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Mangotra, L. K., Manweiler, R., Margetis, S., Markert, C., Masui, H., Matis, H. S., Matulenko, Yu. A., McDonald, D., McShane, T. S., Meschanin, A., Milner, R., Minaev, N. G., Mioduszewski, S., Mischke, A., Mitrovski, M. K., Mohanty, B., Mondal, M. M., Morozov, B., Morozov, D. A., Munhoz, M. G., Naglis, M., Nandi, B. K., Nayak, T. K., Netrakanti, P. K., Nelson, J. M., Nogach, L. V., Nurushev, S. B., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pandit, Y., Panebratsev, Y., Pawlak, T., Pei, H., Peitzmann, T., Perkins, C., Peryt, W., Phatak, S. C., Pile, P., Planinic, M., Ploskon, M. A., Pluta, J., Plyku, D., Poljak, N., Poskanzer, A. M., Potukuchi, B. V. K. S., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Rose, A., Ruan, L., Rusnak, J., Sahoo, N. R., Sakai, S., Sakrejda, I., Sakuma, T., Salur, S., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schuster, T. R., Seele, J., Seger, J., Selyuzhenkov, I., Seyboth, P., Shahaliev, E., Shao, M., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Simon, F., Singaraju, R. N., Skoby, M. J., Smirnov, N., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Staszak, D., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Subba, N. L., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Tram, V. N., Trentalange, S., Tribble, R. E., Tribedy, P., Tsai, O. D., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen Jr., J. A., Varma, R., Vasconcelos, G. M. S., Vasiliev, A. N., Videbæk, F., Viyogi, Y. P., Vokal, S., Wada, M., Walker, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, J., Zhong, C., Zhou, W., Zhu, X., Zhu, Y. H., Zoulkarneev, R., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment - Abstract
We report new STAR measurements of mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$ particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the $\Lambda$, $\bar{\Lambda}$, $K^{0}_{S}$ particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.
- Published
- 2011
- Full Text
- View/download PDF
47. Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
- Author
-
Agakishiev, H., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Beavis, D. R., Behera, N. K., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Biritz, B., Bland, L. C., Bordyuzhin, I. G., Borowski, W., Bouchet, J., Braidot, E., Brandin, A. V., Bridgeman, A., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Calderon, M., Cebra, D., Cendejas, R., Cervantes, M. C., Chajecki, Z., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Choi, K. E., Christie, W., Chung, P., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Dash, S., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Derevschikov, A. A., de Souza, R. Derradi, Didenko, L., Djawotho, P., Dogra, S. M., Dong, X., Drachenberg, J. L., Draper, J. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Estienne, M., Eun, L., Evdokimov, O., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fine, V., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geromitsos, A., Geurts, F., Ghosh, P., Gorbunov, Y. N., Gordon, A., Grebenyuk, O. G., Grosnick, D., Guertin, S. M., Gupta, A., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heinz, M., Heppelmann, S., Hirsch, A., Hjort, E., Hoffmann, G. W., Hofman, D. J., Huang, B., Huang, H. Z., Humanic, T. J., Huo, L., Igo, G., Jacobs, P., Jacobs, W. W., Jena, C., Jin, F., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Knospe, A. G., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kouchpil, V., Kravtsov, P., Krueger, K., Krus, M., Kumar, L., Kurnadi, P., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, N., Li, W., Li, X., Li, Y., Li, Z. M., Lisa, M. A., Liu, F., Liu, H., Liu, J., Ljubicic, T., Llope, W. J., Longacre, R. S., Love, W. A., Lu, Y., Lukashov, E. V., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Mangotra, L. K., Manweiler, R., Margetis, S., Markert, C., Masui, H., Matis, H. S., Matulenko, Yu. A., McDonald, D., McShane, T. S., Meschanin, A., Milner, R., Minaev, N. G., Mioduszewski, S., Mischke, A., Mitrovski, M. K., Mohammed, Y., Mohanty, B., Mondal, M. M., Morozov, B., Morozov, D. A., Munhoz, M. G., Mustafa, M. K., Naglis, M., Nandi, B. K., Nayak, T. K., Netrakanti, P. K., Nogach, L. V., Nurushev, S. B., Odyniec, G., Ogawa, A., Oh, K., Ohlson, A., Okorokov, V., Oldag, E. W., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pandit, Y., Panebratsev, Y., Pawlak, T., Pei, H., Peitzmann, T., Perkins, C., Peryt, W., Phatak, S. C., Pile, P., Planinic, M., Ploskon, M. A., Pluta, J., Plyku, D., Poljak, N., Porter, J., Poskanzer, A. M., Potukuchi, B. V. K. S., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Rose, A., Ruan, L., Rusnak, J., Sahoo, N. R., Sakai, S., Sakrejda, I., Salur, S., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Selyuzhenkov, I., Seyboth, P., Shahaliev, E., Shao, M., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Simon, F., Singaraju, R. N., Skoby, M. J., Smirnov, N., Sorensen, P., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Staszak, D., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Subba, N. L., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Trainor, T. A., Tram, V. N., Trentalange, S., Tribble, R. E., Tribedy, P., Tsai, O. D., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Vasiliev, A. N., Videbaek, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Wada, M., Walker, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Z., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, J., Zhong, C., Zhou, W., Zhu, X., Zhu, Y. H., Zoulkarneev, R., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment - Abstract
We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties., Comment: By the STAR Collaboration. 6 pages, 2 figures
- Published
- 2011
- Full Text
- View/download PDF
48. Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV
- Author
-
Agakishiev, H., Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, C. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Beavis, D. R., Behera, N. K., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Biritz, B., Bland, L. C., Borowski, W., Bouchet, J., Braidot, E., Brandin, A. V., Bridgeman, A., Brovko, S. G., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Sanchez, M. Calderon de la Barca, Cebra, D., Cendejas, R., Cervantes, M. C., Chajecki, Z., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Chen, L., Cheng, J., Cherney, M., Chikanian, A., Choi, K. E., Christie, W., Chung, P., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Dash, S., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Derevschikov, A. A., de Souza, R. Derradi, Didenko, L., Djawotho, P., Dogra, S. M., Dong, X., Drachenberg, J. L., Draper, J. E., Dunlop, J. C., Efimov, L. G., Elnimr, M., Engelage, J., Eppley, G., Estienne, M., Eun, L., Evdokimov, O., Fatemi, R., Fedorisin, J., Feng, A., Fersch, R. G., Filip, P., Finch, E., Fine, V., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Geromitsos, A., Geurts, F., Ghosh, P., Gorbunov, Y. N., Gordon, A., Grebenyuk, O., Grosnick, D., Guertin, S. M., Gupta, A., Guryn, W., Haag, B., Hajkova, O., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heinz, M., Heppelmann, S., Hirsch, A., Hjort, E., Hofmann, G. W., Hofman, D. J., Huang, B., Huang, H. Z., Humanic, T. J., Huo, L., Igo, G., Jacobs, P., Jacobs, W. W., Jena, C., Jin, F., Joseph, J., Judd, E. G., Kabana, S., Kang, K., Kapitan, J., Kauder, K., Ke, H., Keane, D., Kechechyan, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Knospe, A. G., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kouchpil, V., Kravtsov, P., Krueger, K., Krus, M., Kumar, L., Kurnadi, P., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, N., Li, W., Li, X., Li, Y., Li, Z. M., Lisa, M. A., Liu, F., Liu, H., Liu, J., Ljubicic, T., Llope, W. J., Longacre, R. S., Love, W. A., Lu, Y., Lukashov, E. V., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Mangotra, L. K., Manweiler, R., Margetis, S., Markert, C., Masui, H., Matis, H. S., Matulenko, Yu. A., McDonald, D., McShane, T. S., Meschanin, A., Milner, R., Minaev, N. G., Mioduszewski, S., Mischke, A., Mitrovski, M. K., Mohanty, B., Mondal, M. M., Morozov, B., Morozov, D. A., Munhoz, M. G., Naglis, M., Nandi, B. K., Nayak, T. K., Netrakanti, P. K., Nogach, L. V., Nurushev, S. B., Odyniec, G., Ogawa, A., Oh, Ohlson, Okorokov, V., Oldag, E. W., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pandit, Y., Panebratsev, Y., Pawlak, T., Pei, H., Peitzmann, T., Perkins, C., Peryt, W., Phatak, S. C., Pile, P., Planinic, M., Ploskon, M. A., Pluta, J., Plyku, D., Poljak, N., Poskanzer, A. M., Potukuchi, B. V. K. S., Powell, C. B., Prindle, D., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Rose, A., Ruan, L., Rusnak, J., Sahoo, N. R., Sakai, S., Sakrejda, I., Sakuma, T., Salur, S., Sandweiss, J., Sangaline, E., Sarkar, A., Schambach, J., Scharenberg, R. P., Schmah, A. M., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Selyuzhenkov, I., Seyboth, P., Shahaliev, E., Shao, M., Sharma, M., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Simon, F., Singaraju, R. N., Skoby, M. J., Smirnov, N., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Staszak, D., Steadman, S. G., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Subba, N. L., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Tlusty, D., Tokarev, M., Tram, V. N., Trentalange, S., Tribble, R. E., Tribedy, Tsai, O. D., Ullrich, T., Underwood, D. G., Van Buren, G., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Vasiliev, A. N., Videbaek, F., Viyogi, Y. P., Vokal, S., Wada, M., Walker, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Witzke, W., Wu, Y. F., Xiao, Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yip, K., Yoo, I-K., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, J., Zhong, C., Zhou, W., Zhu, X., Zhu, Y. H., Zoulkarneev, R., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ..., Comment: 54 pages, 40 figures, 6 tables. As published
- Published
- 2010
- Full Text
- View/download PDF
49. K*0 production in Cu+Cu and Au+Au collisions at \sqrt{s_NN} = 62.4 GeV and 200 GeV
- Author
-
Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Anson, Daniel, Arkhipkin, D., Averichev, G. S., Balewski, J., Barnby, L. S., Baumgart, S., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Biritz, B., Bland, L. C., Bonner, B. E., Borowski, W., Bouchet, J., Braidot, E., Brandin, A. V., Bridgeman, A., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Calderon, M., Catu, O., Cebra, D., Cendejas, R., Cervantes, M. C., Chajecki, Z., chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Cheng, J., Cherney, M., Chikanian, A., Choi, K. E., Christie, W., Chung, P., Clarke, R. F., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Das, D., Dash, S., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Derevschikov, A. A., de Souza, R. Derradi, Didenko, L., Djawotho, P., Dogra, S. M., Dong, X., Drachenberg, J. L., Draper, J. E., Dunlop, J. C., Mazumdar, M. R. Dutta, Efimov, L. G., Elhalhuli, E., Elnimr, M., Engelage, J., Eppley, G., Erazmus, B., Estienne, M., Eun, L., Evdokimov, O., Fachini, P., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fine, V., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Ganti, M. S., Garcia-Solis, E. J., Geromitsos, A., Geurts, F., Ghazikhanian, V., Ghosh, P., Gorbunov, Y. N., Gordon, A., Grebenyuk, O., Grosnick, D., Guertin, S. M., Gupta, A., Guryn, W., Haag, B., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heinz, M., Heppelmann, S., Hirsch, A., Hjort, E., Hoffman, A. M., Hoffmann, G. W., Hofman, D. J., Huang, B., Huang, H. Z., Humanic, T. J., Huo, L., Igo, G., Jacobs, P., Jacobs, W. W., Jena, C., Jin, F., Jones, C. L., Jones, P. G., Joseph, J., Judd, E. G., Kabana, S., Kajimoto, K., Kang, K., Kapitan, J., Kauder, K., Keane, D., Kechechyan, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Kizka, V., Klein, S. R., Knospe, A. G., Kocoloski, A., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kouchpil, V., Kravtsov, P., Krueger, K., Krus, M., Kumar, L., Kurnadi, P., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, C-H., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, N., Li, W., Li, X., Li, Y., Li, Z. M., Lin, G., Lindenbaum, S. J., Lisa, M. A., Liu, F., Liu, H., Liu, J., Ljubicic, T., Llope, W. J., Longacre, R. S., Love, W. A., Lu, Y., Lukashov, E. V., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Mangotra, L. K., Manweiler, R., Margetis, S., Markert, C., Masui, H., Matis, H. S., Matulenko, Yu. A., McDonald, D., McShane, T. S., Meschanin, A., Milner, R., Minaev, N. G., Mioduszewski, S., Mischke, A., Mitrovski, M. K., Mohanty, B., Mondal, M. M., Morozov, B., Morozov, D. A., Munhoz, M. G., Nandi, B. K., Nattrass, C., Nayak, T. K., Nelson, J. M., Netrakanti, P. K., Ng, M. J., Nogach, L. V., Nurushev, S. B., Odyniec, G., Ogawa, A., Okorokov, V., Oldag, E. W., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pandit, Y., Panebratsev, Y., Pawlak, T., Peitzmann, T., Perkins, C., Peryt, W., Phatak, S. C., Pile, P., Planinic, M., Ploskon, M. A., Pluta, J., Plyku, D., Poljak, N., Poskanzer, A. M., Potukuchi, B. V. K. S., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Rose, A., Roy, C., Ruan, L., Sahoo, R., Sakai, S., Sakrejda, I., Sakuma, T., Salur, S., Sandweiss, J., Sangaline, E., Schambach, J., Scharenberg, R. P., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Selyuzhenkov, I., Seyboth, P., Shahaliev, E., Shao, M., Sharma, M., Shi, S. S., Sichtermann, E. P., Simon, F., Singaraju, R. N., Skoby, M. J., Smirnov, N., Sorensen, P., Sowinski, J., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Staszak, D., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Subba, N. L., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Timoshenko, S., Tlusty, D., Tokarev, M., Trainor, T. A., Tram, V. N., Trentalange, S., Tribble, R. E., Tsai, O. D., Ulery, J., Ullrich, T., Underwood, D. G., Van Buren, G., van Leeuwen, M., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Vasiliev, A. N., Videbaek, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Wada, M., Walker, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Wu, Y. F., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yip, K., Yoo, I-K., Yue, Q., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, J., Zhong, C., Zhou, J., Zhou, W., Zhu, X., Zhu, Y. H., Zoulkarneev, R., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,Nuclear Theory - Abstract
We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum,
, are presented. The measured N(K*0)/N(K) and N(\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production., Comment: 14 pages and 13 figures - Published
- 2010
- Full Text
- View/download PDF
50. Higher Moments of Net-proton Multiplicity Distributions at RHIC
- Author
-
Aggarwal, M. M., Ahammed, Z., Alakhverdyants, A. V., Alekseev, I., Alford, J., Anderson, B. D., Arkhipkin, D., Averichev, G. S., Balewski, J., Barnby, L. S., Baumgart, S., Beavis, D. R., Bellwied, R., Betancourt, M. J., Betts, R. R., Bhasin, A., Bhati, A. K., Bichsel, H., Bielcik, J., Bielcikova, J., Biritz, B., Bland, L. C., Bonner, 3 B. E., Bouchet, J., Braidot, E., Brandin, A. V., Bridgeman, A., Bruna, E., Bueltmann, S., Bunzarov, I., Burton, T. P., Cai, X. Z., Caines, H., Sánchez, M. Calderón de la Barca, Catu, O., Cebra, D., Cendejas, R., Cervantes, M. C., Chajecki, Z., Chaloupka, P., Chattopadhyay, S., Chen, H. F., Chen, J. H., Chen, J. Y., Cheng, J., Cherney, M., Chikanian, A., Choi, K. E., Christie, W., Chung, P., Clarke, R. F., Codrington, M. J. M., Corliss, R., Cramer, J. G., Crawford, H. J., Das, D., Dash, S., Leyva, A. Davila, De Silva, L. C., Debbe, R. R., Dedovich, T. G., Derevschikov, A. A., de Souza, R. Derradi, Didenko, L., Djawotho, P., Dogra, S. M., Dong, X., Drachenberg, J. L., Draper, J. E., Dunlop, J. C., Mazumdar, M. R. Dutta, Efimov, L. G., Elhalhuli, E., Elnimr, M., Engelage, J., Eppley, G., Erazmus, B., Estienne, M., Eun, L., Evdokimov, O., Fachini, P., Fatemi, R., Fedorisin, J., Fersch, R. G., Filip, P., Finch, E., Fine, V., Fisyak, Y., Gagliardi, C. A., Gangadharan, D. R., Ganti, M. S., Garcia-Solis, E. J., Geromitsos, A., Geurts, F., Ghazikhanian, V., Ghosh, P., Gorbunov, Y. N., Gordon, A., Grebenyuk, O., Grosnick, D., Guertin, S. M., Gupta, A., Gupta, N., Guryn, W., Haag, B., Hamed, A., Han, L-X., Harris, J. W., Hays-Wehle, J. P., Heinz, M., Heppelmann, S., Hirsch, A., Hjort, E., Hoffman, A. M., Hoffmann, G. W., Hofman, D. J., Huang, B., Huang, H. Z., Humanic, T. J., Huo, L., Igo, G., Jacobs, P., Jacobs, W. W., Jena, C., Jin, F., Jones, C. L., Jones, P. G., Joseph, J., Judd, E. G., Kabana, S., Kajimoto, K., Kang, K., Kapitan, J., Kauder, K., Keane, D., Kechechyan, A., Kettler, D., Kikola, D. P., Kiryluk, J., Kisiel, A., Klein, S. R., Knospe, A. G., Kocoloski, A., Koetke, D. D., Kollegger, T., Konzer, J., Koralt, I., Koroleva, L., Korsch, W., Kotchenda, L., Kouchpil, V., Kravtsov, P., Krueger, K., Krus, M., Kumar, L., Kurnadi, P., Lamont, M. A. C., Landgraf, J. M., LaPointe, S., Lauret, J., Lebedev, A., Lednicky, R., Lee, C-H., Lee, J. H., Leight, W., LeVine, M. J., Li, C., Li, L., Li, N., Li, W., Li, X., Li, Y., Li, Z. M., Lin, G., Lindenbaum, S. J., Lisa, M. A., Liu, F., Liu, H., Liu, J., Ljubicic, T., Llope, W. J., Longacre, R. S., Love, W. A., Lu, Y., Lukashov, E. V., Luo, X., Ma, G. L., Ma, Y. G., Mahapatra, D. P., Majka, R., Mall, O. I., Mangotra, L. K., Manweiler, R., Margetis, S., Markert, C., Masui, H., Matis, H. S., Matulenko, Yu. A., McDonald, D., McShane, T. S., Meschanin, A., Milner, R., Minaev, N. G., Mioduszewski, S., Mischke, A., Mitrovski, M. K., Mohanty, B., Morozov, M. M. Mondal. B., Morozov, D. A., Munhoz, M. G., Nandi, B. K., Nattrass, C., Nayak, T. K., Nelson, J. M., Netrakanti, P. K., Ng, M. J., Nogach, L. V., Nurushev, S. B., Odyniec, G., Ogawa, A., Okorokov, V., Oldag, E. W., Olson, D., Pachr, M., Page, B. S., Pal, S. K., Pandit, Y., Panebratsev, Y., Pawlak, T., Peitzmann, T., Perevoztchikov, V., Perkins, C., Peryt, W., Phatak, S. C., Pile, P., Planinic, M., Ploskon, M. A., Pluta, J., Plyku, D., Poljak, N., Poskanzer, A. M., Potukuchi, B. V. K. S., Powell, C. B., Prindle, D., Pruneau, C., Pruthi, N. K., Pujahari, P. R., Putschke, J., Qiu, H., Raniwala, R., Raniwala, S., Ray, R. L., Redwine, R., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevsky, O. V., Romero, J. L., Rose, A., Roy, C., Ruan, L., Sahoo, R., Sakai, S., Sakrejda, I., Sakuma, T., Salur, S., Sandweiss, J., Sangaline, E., Schambach, J., Scharenberg, R. P., Schmitz, N., Schuster, T. R., Seele, J., Seger, J., Selyuzhenkov, I., Seyboth, P., Shahaliev, E., Shao, M., Sharma, M., Shi, S. S., Sichtermann, E. P., Simon, F., Singaraju, R. N., Skoby, M. J., Smirnov, N., Sorensen, P., Sowinski, J., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., Staszak, D., Stevens, J. R., Stock, R., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Suarez, M. C., Subba, N. L., Sumbera, M., Sun, X. M., Sun, Y., Sun, Z., Surrow, B., Svirida, D. N., Symons, T. J. M., de Toledo, A. Szanto, Takahashi, J., Tang, A. H., Tang, Z., Tarini, L. H., Tarnowsky, T., Thein, D., Thomas, J. H., Tian, J., Timmins, A. R., Timoshenko, S., Tlusty, D., Tokarev, M., Tram, V. N., Trentalange, S., Tribble, R. E., Tsai, O. D., Ulery, J., Ullrich, T., Underwood, D. G., Van Buren, G., van Leeuwen, M., van Nieuwenhuizen, G., Vanfossen, Jr., J. A., Varma, R., Vasconcelos, G. M. S., Vasiliev, A. N., Videbaek, F., Viyogi, Y. P., Vokal, S., Voloshin, S. A., Wada, M., Walker, M., Wang, F., Wang, G., Wang, H., Wang, J. S., Wang, Q., Wang, X. L., Wang, Y., Webb, G., Webb, J. C., Westfall, G. D., Whitten Jr., C., Wieman, H., Wissink, S. W., Witt, R., Wu, Y. F., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, W., Xu, Y., Xu, Z., Xue, L., Yang, Y., Yepes, P., Yip, K., Yoo, I-K., Yue, Q., Zawisza, M., Zbroszczyk, H., Zhan, W., Zhang, J. B., Zhang, S., Zhang, W. M., Zhang, X. P., Zhang, Y., Zhang, Z. P., Zhao, J., Zhong, C., Zhou, J., Zhou, W., Zhu, X., Zhu, Y. H., Zoulkarneev, R., and Zoulkarneeva, Y.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV., Comment: 6 pages and 4 figures. Version accepted for publication in Physical Review Letters
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.