669 results on '"Xu D"'
Search Results
2. LHAASO-KM2A detector simulation using Geant4
- Author
-
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, J. H., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Abstract
KM2A is one of the main sub-arrays of LHAASO, working on gamma ray astronomy and cosmic ray physics at energies above 10 TeV. Detector simulation is the important foundation for estimating detector performance and data analysis. It is a big challenge to simulate the KM2A detector in the framework of Geant4 due to the need to track numerous photons from a large number of detector units (>6000) with large altitude difference (30 m) and huge coverage (1.3 km2). In this paper, the design of the KM2A simulation code G4KM2A based on Geant4 is introduced. The process of G4KM2A is optimized mainly in memory consumption to avoid memory overflow. Some simplifications are used to significantly speed up the execution of G4KM2A. The running time is reduced by at least 30 times compared to full detector simulation. The particle distributions and the core/angle resolution comparison between simulation and experimental data of the full KM2A array are also presented, which show good agreement.
- Published
- 2024
- Full Text
- View/download PDF
3. Developing frequency division multiplexing readout for HUBS
- Author
-
den Herder, Jan-Willem A., Nikzad, Shouleh, Nakazawa, Kazuhiro, Wang, Q., Chen, N. H., Zhang, J. Y., Wang, S. F., Liu, J. J., Wang, G. L., Liang, Y. J., Jin, H., Xiao, A. M., Zheng, T., Chen, Y. F., Wang, Y., Liu, J. G., Shang-Guan, P. K., Xu, D., Guo, Y. X., Li, J. J., Lun, T. T., Zhang, Z. S., and Cui, W.
- Published
- 2024
- Full Text
- View/download PDF
4. Maternal androgen excess inhibits fetal cardiomyocytes proliferation through RB-mediated cell cycle arrest and induces cardiac hypertrophy in adulthood
- Author
-
Huo, Y., Wang, W., Zhang, J., Xu, D., Bai, F., and Gui, Y.
- Abstract
Purpose: Maternal hyperandrogenism during pregnancy is associated with adverse gestational outcomes and chronic non-communicable diseases in offspring. However, few studies are reported to demonstrate the association between maternal androgen excess and cardiac health in offspring. This study aimed to explore the relation between androgen exposure in utero and cardiac health of offspring in fetal and adult period. Its underlying mechanism is also illustrated in this research. Methods: Pregnant mice were injected with dihydrotestosterone (DHT) from gestational day (GD) 16.5 to GD18.5. On GD18.5, fetal heart tissue was collected for metabolite and morphological analysis. The hearts from adult offspring were also collected for morphological and qPCR analysis. H9c2 cells were treated with 75 μM androsterone. Immunofluorescence, flow cytometry, qPCR, and western blot were performed to observe cell proliferation and explore the underlying mechanism. Results: Intrauterine exposure to excessive androgen led to thinner ventricular wall, decreased number of cardiomyocytes in fetal offspring and caused cardiac hypertrophy, compromised cardiac function in adult offspring. The analysis of steroid hormone metabolites in fetal heart tissue by ultra performance liquid chromatography and tandem mass spectrometry showed that the content of androgen metabolite androsterone was significantly increased. Mechanistically, H9c2 cells treated with androsterone led to a significant decrease in phosphorylated retinoblastoma protein (pRB) and cell cycle-related protein including cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin D1 (CCND1) in cardiomyocytes. This resulted in cell cycle arrest at G1–S phase, which in turn inhibited cardiomyocyte proliferation. Conclusion: Taken together, our results indicate that in utero exposure to DHT, its metabolite androsterone could directly decrease cardiomyocytes proliferation through cell cycle arrest, which has a life-long-lasting effect on cardiac health. Our study highlights the importance of monitoring sex hormones in women during pregnancy and the follow-up of cardiac function in offspring with high risk of intrauterine androgen exposure.
- Published
- 2024
- Full Text
- View/download PDF
5. Assessing Environmental Oil Spill Based on Fluorescence Images of Water Samples and Deep Learning.
- Author
-
Liu, D. P., Liu, M., Sun, G. Y., Zhou, Z. Q., Wang, D. L., He, F., Li, J. X., Xie, J. C., Gettler, R., Brunson, E., Steevens, J., and Xu, D.
- Subjects
OIL spills ,CONVOLUTIONAL neural networks ,DEEP learning ,WATER sampling ,BASE oils ,FLUORESCENCE - Abstract
Measuring oil concentration in the aquatic environment is essential for determining the potential exposure, risk, or injury for oil spill response and natural resource damage assessment. Conventional analytical chemistry methods require samples to be collected in the field, shipped, and processed in the laboratory, which is also rather time-consuming, laborious, and costly. For rapid field response immediately after a spill, there is a need to estimate oil concentration in near real time. To make the oil analysis more portable, fast, and cost effective, we developed a plug-and-play device and a deep learning model to assess oil levels in water using fluorescent images of water samples. We constructed a 3D-printed device to collect fluorescent images of solvent-extracted water samples using an iPhone. We prepared approximately 1,300 samples of oil at different concentrations to train and test the deep learning model. The model comprises a convolutional neural network and a novel module of histogram bottleneck block with an attention mechanism to exploit the spectral features found in low-contrast images. This model predicts the oil concentration in weight per volume based on fluorescence image. We devised a confidence interval estimator by combining gradient boosting and polymodal regressor to provide a confidence assessment of our results. Our model achieved sufficient accuracy to predict oil levels for most environmental applications. We plan to improve the device and iPhone application as a near-real-time tool for oil spill responders to measure oil in water. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Design of the Readout Electronics for the TRIDENT Pathfinder Experiment
- Author
-
Wang, M. X., Gong, G. H., Miao, P., Sun, Z. Y., Tang, J. N., Wu, W. H., and Xu, D. L.
- Abstract
The tRopIcal DEep-sea Neutrino Telescope (TRIDENT) is a future large-scale next-generation neutrino telescope. In September 2021, the TRIDENT pathfinder experiment [TRIDENT EXplorer (T-REX)] completed in situ measurements of deep-sea water properties in the South China Sea. The T-REX apparatus integrates two independent and complementary systems, a photomultiplier tube (PMT) and a camera system, to measure the optical and radioactive properties of the deep-sea water. One light emitter module (LEM) and two light receiver modules (LRMs) were deployed, which were synchronized by using White Rabbit (WR) technology. The LEM generates nanosecond-width light-emitting diode (LED) pulses, while the LRM hosts three PMTs and a camera to detect photons. The submerged apparatus and the data acquisition system (DAQ) perform real-time command and data transmission. We report the design and performance of the readout electronics for T-REX, including hardware modules, firmware design for digital signal processing, and host–computer software.
- Published
- 2023
- Full Text
- View/download PDF
7. Temporal GIS models for cadastral data management: the knowns, unknowns and future
- Author
-
Mango, J., Ngondo, J., Xu, D., Zhang, D., and Li, X.
- Abstract
Numerous temporal GIS models for cadastral data management have been proposed, and to understand the state of their art, a study that critically assesses their designs is needed. This study reviewed 11 models and noted that except with earlier designs; most of the reviewed models could store temporal land parcels with their tracks of changes. However, they lack to maintain the semantics of their data, valid times and potential records of changes, and the alternative techniques to accelerate queries. Thus, a semantical and bi-temporal modelling framework is proposed. Future studies could use the framework and focus on implementation designs to obtain more robust models.
- Published
- 2023
- Full Text
- View/download PDF
8. The effects of natural active substances in food on the toxicity of patulin
- Author
-
Huang, C., Zhang, B., and Xu, D.
- Published
- 2023
- Full Text
- View/download PDF
9. Autonomous and cooperative control of UAV cluster with multi-agent reinforcement learning.
- Author
-
Xu, D. and Chen, G.
- Abstract
In this paper, we expolore Multi-Agent Reinforcement Learning (MARL) methods for unmanned aerial vehicle (UAV) cluster. Considering that the current UAV cluster is still in the program control stage, the fully autonomous and intelligent cooperative combat has not been realised. In order to realise the autonomous planning of the UAV cluster according to the changing environment and cooperate with each other to complete the combat goal, we propose a new MARL framework. It adopts the policy of centralised training with decentralised execution, and uses Actor-Critic network to select the execution action and then to make the corresponding evaluation. The new algorithm makes three key improvements on the basis of Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. The first is to improve learning framework; it makes the calculated Q value more accurate. The second is to add collision avoidance setting, which can increase the operational safety factor. And the third is to adjust reward mechanism; it can effectively improve the cluster's cooperative ability. Then the improved MADDPG algorithm is tested by performing two conventional combat missions. The simulation results show that the learning efficiency is obviously improved, and the operational safety factor is further increased compared with the previous algorithm. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
10. P3.13D.09 Prevalence and Prognostic Impact of SEZ6 Expression in a Real-World Cohort of Patients with Small-Cell Lung Cancer
- Author
-
Wang, S., Luo, A., Choudhury, N., Wang, L., Xu, D., Jiang, F., Roberts-Rapp, L., Choi, Y.C., Cai, M., Rudra-Ganguly, N., Ansell, P., Paz-Ares, L., and Byers, L.A.
- Published
- 2024
- Full Text
- View/download PDF
11. P2.14A.09 Adaptive Reprogramming of Arginine Biosynthesis is an Attractive Target for Modulating the Response to WEE1 Inhibition in Pleural Mesothelioma
- Author
-
Yin, S., Schmid, R.A., Peng, R.-W., Xu, D., and Shu, Y.
- Published
- 2024
- Full Text
- View/download PDF
12. Surveying image segmentation approaches in astronomy.
- Author
-
Xu, D. and Zhu, Y.
- Subjects
MACHINE learning ,TRANSFORMER models ,IMAGE segmentation ,IMAGE processing ,ASTRONOMERS ,DEEP learning - Abstract
Image segmentation plays a critical role in unlocking the mysteries of the universe, providing astronomers with a clearer perspective on celestial objects within complex astronomical images and data cubes. Manual segmentation, while traditional, is not only time-consuming but also susceptible to biases introduced by human intervention. As a result, automated segmentation methods have become essential for achieving robust and consistent results in astronomical studies. This review begins by summarizing traditional and classical segmentation methods widely used in astronomical tasks. Despite the significant improvements these methods have brought to segmentation outcomes, they fail to meet astronomers' expectations, requiring additional human correction, further intensifying the labor-intensive nature of the segmentation process. The review then focuses on the transformative impact of machine learning, particularly deep learning, on segmentation tasks in astronomy. It introduces state-of-the-art machine learning approaches, highlighting their applications and the remarkable advancements they bring to segmentation accuracy in both astronomical images and data cubes. As the field of machine learning continues to evolve rapidly, it is anticipated that astronomers will increasingly leverage these sophisticated techniques to enhance segmentation tasks in their research projects. In essence, this review serves as a comprehensive guide to the evolution of segmentation methods in astronomy, emphasizing the transition from classical approaches to cutting-edge machine learning methodologies. We encourage astronomers to embrace these advancements, fostering a more streamlined and accurate segmentation process that aligns with the ever-expanding frontiers of astronomical exploration. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
13. Software Performance of the ATLAS Track Reconstruction for LHC Run 3
- Author
-
Aad, G., Abbott, B., Abeling, K., Abicht, N. J., Abidi, S. H., Aboulhorma, A., Abramowicz, H., Abreu, H., Abulaiti, Y., Acharya, B. S., Bourdarios, C. Adam, Adamczyk, L., Adamek, L., Addepalli, S. V., Addison, M. J., Adelman, J., Adiguzel, A., Adye, T., Affolder, A. A., Afik, Y., Agaras, M. N., Agarwala, J., Aggarwal, A., Agheorghiesei, C., Ahmad, A., Ahmadov, F., Ahmed, W. S., Ahuja, S., Ai, X., Aielli, G., Aikot, A., Tamlihat, M. Ait, Aitbenchikh, B., Aizenberg, I., Akbiyik, M., Åkesson, T. P. A., Akimov, A. V., Akiyama, D., Akolkar, N. N., Khoury, K. Al, Alberghi, G. L., Albert, J., Albicocco, P., Albouy, G. L., Alderweireldt, S., Aleksa, M., Aleksandrov, I. N., Alexa, C., Alexopoulos, T., Alfonsi, F., Algren, M., Alhroob, M., Ali, B., Ali, H. M. J., Ali, S., Alibocus, S. W., Aliev, M., Alimonti, G., Alkakhi, W., Allaire, C., Allbrooke, B. M. M., Allen, J. F., Flores, C. A. Allendes, Allport, P. P., Aloisio, A., Alonso, F., Alpigiani, C., Estevez, M. Alvarez, Fernandez, A. Alvarez, Cardoso, M. Alves, Alviggi, M. G., Aly, M., Coutinho, Y. Amaral, Ambler, A., Amelung, C., Amerl, M., Ames, C. G., Amidei, D., Santos, S. P. Amor Dos, Amos, K. R., Ananiev, V., Anastopoulos, C., Andeen, T., Anders, J. K., Andrean, S. Y., Andreazza, A., Angelidakis, S., Angerami, A., Anisenkov, A. V., Annovi, A., Antel, C., Anthony, M. T., Antipov, E., Antonelli, M., Anulli, F., Aoki, M., Aoki, T., Pozo, J. A. Aparisi, Aparo, M. A., Bella, L. Aperio, Appelt, C., Apyan, A., Aranzabal, N., Val, S. J. Arbiol, Arcangeletti, C., Arce, A. T. H., Arena, E., Arguin, J-F., Argyropoulos, S., Arling, J.-H., Arnaez, O., Arnold, H., Artoni, G., Asada, H., Asai, K., Asai, S., Asbah, N. A., Assahsah, J., Assamagan, K., Astalos, R., Atashi, S., Atkin, R. J., Atkinson, M., Atmani, H., Atmasiddha, P. A., Augsten, K., Auricchio, S., Auriol, A. D., Austrup, V. A., Avolio, G., Axiotis, K., Azuelos, G., Babal, D., Bachacou, H., Bachas, K., Bachiu, A., Backman, F., Badea, A., Bagnaia, P., Bahmani, M., Bailey, A. J., Bailey, V. R., Baines, J. T., Baines, L., Baker, O. K., Bakos, E., Gupta, D. Bakshi, Balakrishnan, V., Balasubramanian, R., Baldin, E. M., Balek, P., Ballabene, E., Balli, F., Baltes, L. M., Balunas, W. K., Balz, J., Banas, E., Bandieramonte, M., Bandyopadhyay, A., Bansal, S., Barak, L., Barakat, M., Barberio, E. L., Barberis, D., Barbero, M., Barel, M. Z., Barends, K. N., Barillari, T., Barisits, M-S., Barklow, T., Baron, P., Moreno, D. A. Baron, Baroncelli, A., Barone, G., Barr, A. J., Barr, J. D., Navarro, L. Barranco, Barreiro, F., da Costa, J. Barreiro Guimarães, Barron, U., Teixeira, M. G. Barros, Barsov, S., Bartels, F., Bartoldus, R., Barton, A. E., Bartos, P., Basan, A., Baselga, M., Bassalat, A., Basso, M. J., Basson, C. R., Bates, R. L., Batlamous, S., Batley, J. R., Batool, B., Battaglia, M., Battulga, D., Bauce, M., Bauer, M., Bauer, P., Hurrell, L. T. Bazzano, Beacham, J. B., Beau, T., Beaucamp, J. Y., Beauchemin, P. H., Becherer, F., Bechtle, P., Beck, H. P., Becker, K., Beddall, A. J., Bednyakov, V. A., Bee, C. P., Beemster, L. J., Beermann, T. A., Begalli, M., Begel, M., Behera, A., Behr, J. K., Beirer, J. F., Beisiegel, F., Belfkir, M., Bella, G., Bellagamba, L., Bellerive, A., Bellos, P., Beloborodov, K., Benchekroun, D., Bendebba, F., Benhammou, Y., Benoit, M., Bensinger, J. R., Bentvelsen, S., Beresford, L., Beretta, M., Kuutmann, E. Bergeaas, Berger, N., Bergmann, B., Beringer, J., Bernardi, G., Bernius, C., Bernlochner, F. U., Bernon, F., Berry, T., Berta, P., Berthold, A., Bertram, I. A., Bethke, S., Betti, A., Bevan, A. J., Bhalla, N. K., Bhamjee, M., Bhatta, S., Bhattacharya, D. S., Bhattarai, P., Bhopatkar, V. S., Bi, R., Bianchi, R. M., Bianco, G., Biebel, O., Bielski, R., Biglietti, M., Bindi, M., Bingul, A., Bini, C., Biondini, A., Birch-sykes, C. J., Bird, G. A., Birman, M., Biros, M., Biryukov, S., Bisanz, T., Bisceglie, E., Biswal, J. P., Biswas, D., Bitadze, A., Bjørke, K., Bloch, I., Blocker, C., Blue, A., Blumenschein, U., Blumenthal, J., Bobbink, G. J., Bobrovnikov, V. S., Boehler, M., Boehm, B., Bogavac, D., Bogdanchikov, A. G., Bohm, C., Boisvert, V., Bokan, P., Bold, T., Bomben, M., Bona, M., Boonekamp, M., Booth, C. D., Borbély, A. G., Bordulev, I. S., Borecka-Bielska, H. M., Borissov, G., Bortoletto, D., Boscherini, D., Bosman, M., Sola, J. D. Bossio, Bouaouda, K., Bouchhar, N., Boudreau, J., Bouhova-Thacker, E. V., Boumediene, D., Bouquet, R., Boveia, A., Boyd, J., Boye, D., Boyko, I. R., Bracinik, J., Brahimi, N., Brandt, G., Brandt, O., Braren, F., Brau, B., Brau, J. E., Brener, R., Brenner, L., Brenner, R., Bressler, S., Britton, D., Britzger, D., Brock, I., Brooijmans, G., Brooks, W. K., Brost, E., Brown, L. M., Bruce, L. E., Bruckler, T. L., de Renstrom, P. A. Bruckman, Brüers, B., Bruni, A., Bruni, G., Bruschi, M., Bruscino, N., Buanes, T., Buat, Q., Buchin, D., Buckley, A. G., Bulekov, O., Bullard, B. A., Burdin, S., Burgard, C. D., Burger, A. M., Burghgrave, B., Burlayenko, O., Burr, J. T. P., Burton, C. D., Burzynski, J. C., Busch, E. L., Büscher, V., Bussey, P. J., Butler, J. M., Buttar, C. M., Butterworth, J. M., Buttinger, W., Vazquez, C. J. Buxo, Buzykaev, A. R., Urbán, S. Cabrera, Cadamuro, L., Caforio, D., Cai, H., Cai, Y., Cai, Y., Cairo, V. M. M., Cakir, O., Calace, N., Calafiura, P., Calderini, G., Calfayan, P., Callea, G., Caloba, L. P., Calvet, D., Calvet, S., Calvet, T. P., Calvetti, M., Toro, R. Camacho, Camarda, S., Munoz, D. Camarero, Camarri, P., Camerlingo, M. T., Cameron, D., Camincher, C., Campanelli, M., Camplani, A., Canale, V., Canesse, A., Cantero, J., Cao, Y., Capocasa, F., Capua, M., Carbone, A., Cardarelli, R., Cardenas, J. C. J., Cardillo, F., Carli, T., Carlino, G., Carlotto, J. I., Carlson, B. T., Carlson, E. M., Carminati, L., Carnelli, A., Carnesale, M., Caron, S., Carquin, E., Carrá, S., Carratta, G., Argos, F. Carrio, Carter, J. W. S., Carter, T. M., Casado, M. P., Caspar, M., Castiglia, E. G., Castillo, F. L., Garcia, L. Castillo, Gimenez, V. Castillo, Castro, N. F., Catinaccio, A., Catmore, J. R., Cavaliere, V., Cavalli, N., Cavasinni, V., Cekmecelioglu, Y. C., Celebi, E., Celli, F., Centonze, M. S., Cepaitis, V., Cerny, K., Cerqueira, A. S., Cerri, A., Cerrito, L., Cerutti, F., Cervato, B., Cervelli, A., Cesarini, G., Cetin, S. A., Chadi, Z., Chakraborty, D., Chan, J., Chan, W. Y., Chapman, J. D., Chapon, E., Chargeishvili, B., Charlton, D. G., Charman, T. P., Chatterjee, M., Chauhan, C., Chekanov, S., Chekulaev, S. V., Chelkov, G. A., Chen, A., Chen, B., Chen, B., Chen, H., Chen, H., Chen, J., Chen, J., Chen, M., Chen, S., Chen, S. J., Chen, X., Chen, X., Chen, Y., Cheng, C. L., Cheng, H. C., Cheong, S., Cheplakov, A., Cheremushkina, E., Cherepanova, E., Moursli, R. Cherkaoui El, Cheu, E., Cheung, K., Chevalier, L., Chiarella, V., Chiarelli, G., Chiedde, N., Chiodini, G., Chisholm, A. S., Chitan, A., Chitishvili, M., Chizhov, M. V., Choi, K., Chomont, A. R., Chou, Y., Chow, E. Y. S., Chowdhury, T., Chu, K. L., Chu, M. C., Chu, X., Chudoba, J., Chwastowski, J. J., Cieri, D., Ciesla, K. M., Cindro, V., Ciocio, A., Cirotto, F., Citron, Z. H., Citterio, M., Ciubotaru, D. A., Ciungu, B. M., Clark, A., Clark, P. J., Columbie, J. M. Clavijo, Clawson, S. E., Clement, C., Clercx, J., Clissa, L., Coadou, Y., Cobal, M., Coccaro, A., Barrue, R. F. Coelho, De Sa, R. Coelho Lopes, Coelli, S., Cohen, H., Coimbra, A. E. C., Cole, B., Collot, J., Muiño, P. Conde, Connell, M. P., Connell, S. H., Connelly, I. A., Conroy, E. I., Conventi, F., Cooke, H. G., Cooper-Sarkar, A. M., Choi, A. Cordeiro Oudot, Cormier, F., Corpe, L. D., Corradi, M., Corriveau, F., Cortes-Gonzalez, A., Costa, M. J., Costanza, F., Costanzo, D., Cote, B. M., Cowan, G., Cranmer, K., Cremonini, D., Crépé-Renaudin, S., Crescioli, F., Cristinziani, M., Cristoforetti, M., Croft, V., Crosby, J. E., Crosetti, G., Cueto, A., Donszelmann, T. Cuhadar, Cui, H., Cui, Z., Cunningham, W. R., Curcio, F., Czodrowski, P., Czurylo, M. M., Da Cunha Sargedas De Sousa, M. J., Da Fonseca Pinto, J. V., Da Via, C., Dabrowski, W., Dado, T., Dahbi, S., Dai, T., Santo, D. Dal, Dallapiccola, C., Dam, M., D’amen, G., D’Amico, V., Damp, J., Dandoy, J. R., Daneri, M. F., Danninger, M., Dao, V., Darbo, G., Darmora, S., Das, S. J., D’Auria, S., David, C., Davidek, T., Davis-Purcell, B., Dawson, I., Day-hall, H. A., De, K., De Asmundis, R., De Biase, N., De Castro, S., De Groot, N., de Jong, P., De la Torre, H., De Maria, A., De Salvo, A., De Sanctis, U., De Santo, A., De Vivie De Regie, J. B., Dedovich, D. V., Degens, J., Deiana, A. M., Corso, F. Del, Peso, J. Del, Rio, F. Del, Deliot, F., Delitzsch, C. M., Pietra, M. Della, Volpe, D. Della, Dell’Acqua, A., Dell’Asta, L., Delmastro, M., Delsart, P. A., Demers, S., Demichev, M., Denisov, S. P., D’Eramo, L., Derendarz, D., Derue, F., Dervan, P., Desch, K., Deutsch, C., Bello, F. A. Di, Ciaccio, A. Di, Ciaccio, L. Di, Domenico, A. Di, Donato, C. Di, Girolamo, A. Di, Gregorio, G. Di, Luca, A. Di, Micco, B. Di, Nardo, R. Di, Diaconu, C., Diamantopoulou, M., Dias, F. A., Vale, T. Dias Do, Diaz, M. A., Capriles, F. G. Diaz, Didenko, M., Diehl, E. B., Diehl, L., Cornell, S. Díez, Pardos, C. Diez, Dimitriadi, C., Dimitrievska, A., Dingfelder, J., Dinu, I-M., Dittmeier, S. J., Dittus, F., Djama, F., Djobava, T., Djuvsland, J. I., Doglioni, C., Dohnalova, A., Dolejsi, J., Dolezal, Z., Dona, K. M., Donadelli, M., Dong, B., Donini, J., D’Onofrio, A., D’Onofrio, M., Dopke, J., Doria, A., Fernandes, N. Dos Santos, Dougan, P., Dova, M. T., Doyle, A. T., Draguet, M. A., Dreyer, E., Drivas-koulouris, I., Drnevich, M., Drobac, A. S., Drozdova, M., Du, D., Pree, T. A. du, Dubinin, F., Dubovsky, M., Duchovni, E., Duckeck, G., Ducu, O. A., Duda, D., Dudarev, A., Duden, E. R., D’uffizi, M., Duflot, L., Dührssen, M., Dülsen, C., Dumitriu, A. E., Dunford, M., Dungs, S., Dunne, K., Duperrin, A., Yildiz, H. Duran, Düren, M., Durglishvili, A., Dwyer, B. L., Dyckes, G. I., Dyndal, M., Dysch, S., Dziedzic, B. S., Earnshaw, Z. O., Eberwein, G. H., Eckerova, B., Eggebrecht, S., De Souza, E. Egidio Purcino, Ehrke, L. F., Eigen, G., Einsweiler, K., Ekelof, T., Ekman, P. A., Farkh, S. El, Ghazali, Y. El, Jarrari, H. El, Moussaouy, A. El, Ellajosyula, V., Ellert, M., Ellinghaus, F., Elliot, A. A., Ellis, N., Elmsheuser, J., Elsing, M., Emeliyanov, D., Enari, Y., Ene, I., Epari, S., Erdmann, J., Erland, P. A., Errenst, M., Escalier, M., Escobar, C., Etzion, E., Evans, G., Evans, H., Evans, L. S., Evans, M. O., Ezhilov, A., Ezzarqtouni, S., Fabbri, F., Fabbri, L., Facini, G., Fadeyev, V., Fakhrutdinov, R. M., Falciano, S., Coelho, L. F. Falda Ulhoa, Falke, P. J., Faltova, J., Fan, C., Fan, Y., Fang, Y., Fanti, M., Faraj, M., Farazpay, Z., Farbin, A., Farilla, A., Farooque, T., Farrington, S. M., Fassi, F., Fassouliotis, D., Giannelli, M. Faucci, Fawcett, W. J., Fayard, L., Federic, P., Federicova, P., Fedin, O. L., Fedotov, G., Feickert, M., Feligioni, L., Fellers, D. E., Feng, C., Feng, M., Feng, Z., Fenton, M. J., Fenyuk, A. B., Ferencz, L., Ferguson, R. A. M., Luengo, S. I. Fernandez, Martinez, P. Fernandez, Fernoux, M. J. V., Ferrando, J., Ferrari, A., Ferrari, P., Ferrari, R., Ferrere, D., Ferretti, C., Fiedler, F., Fiedler, P., Filipčič, A., Filmer, E. K., Filthaut, F., Fiolhais, M. C. N., Fiorini, L., Fisher, W. C., Fitschen, T., Fitzhugh, P. M., Fleck, I., Fleischmann, P., Flick, T., Flores, M., Castillo, L. R. Flores, De Acedo, L. Flores Sanz, Follega, F. M., Fomin, N., Foo, J. H., Forland, B. C., Formica, A., Forti, A. C., Fortin, E., Fortman, A. W., Foti, M. G., Fountas, L., Fournier, D., Fox, H., Francavilla, P., Francescato, S., Franchellucci, S., Franchini, M., Franchino, S., Francis, D., Franco, L., Lima, V. Franco, Franconi, L., Franklin, M., Frattari, G., Freegard, A. C., Freund, W. S., Frid, Y. Y., Friend, J., Fritzsche, N., Froch, A., Froidevaux, D., Frost, J. A., Fu, Y., Fujimoto, M., Torregrosa, E. Fullana, Fung, K. Y., De Simas Filho, E. Furtado, Furukawa, M., Fuster, J., Gabrielli, A., Gabrielli, A., Gadow, P., Gagliardi, G., Gagnon, L. G., Gallas, E. J., Gallop, B. J., Gan, K. K., Ganguly, S., Gao, Y., Walls, F. M. Garay, Garcia, B., García, C., Alonso, A. Garcia, Caffaro, A. G. Garcia, Navarro, J. E. García, Garcia-Sciveres, M., Gardner, G. L., Gardner, R. W., Garelli, N., Garg, D., Garg, R. B., Gargan, J. M., Garner, C. A., Garvey, C. M., Gaspar, P., Gaudio, G., Gautam, V., Gauzzi, P., Gavrilenko, I. L., Gavrilyuk, A., Gay, C., Gaycken, G., Gazis, E. N., Geanta, A. A., Gee, C. M., Gemme, C., Genest, M. H., Gentile, S., Gentry, A. D., George, S., George, W. F., Geralis, T., Gessinger-Befurt, P., Geyik, M. E., Ghani, M., Ghneimat, M., Ghorbanian, K., Ghosal, A., Ghosh, A., Ghosh, A., Giacobbe, B., Giagu, S., Giani, T., Giannetti, P., Giannini, A., Gibson, S. M., Gignac, M., Gil, D. T., Gilbert, A. K., Gilbert, B. J., Gillberg, D., Gilles, G., Gillwald, N. E. K., Ginabat, L., Gingrich, D. M., Giordani, M. P., Giraud, P. F., Giugliarelli, G., Giugni, D., Giuli, F., Gkialas, I., Gladilin, L. K., Glasman, C., Gledhill, G. R., Glemža, G., Glisic, M., Gnesi, I., Go, Y., Goblirsch-Kolb, M., Gocke, B., Godin, D., Gokturk, B., Goldfarb, S., Golling, T., Gololo, M. G. D., Golubkov, D., Gombas, J. P., Gomes, A., Da Silva, G. Gomes, Delegido, A. J. Gomez, Gonçalo, R., Gonella, G., Gonella, L., Gongadze, A., Gonnella, F., Gonski, J. L., Andana, R. Y. González, de la Hoz, S. González, Fernandez, S. Gonzalez, Lopez, R. Gonzalez, Renteria, C. Gonzalez, Rodrigues, M. V. Gonzalez, Suarez, R. Gonzalez, Gonzalez-Sevilla, S., Rodriguez, G. R. Gonzalvo, Goossens, L., Gorini, B., Gorini, E., Gorišek, A., Gosart, T. C., Goshaw, A. T., Gostkin, M. I., Goswami, S., Gottardo, C. A., Gotz, S. A., Gouighri, M., Goumarre, V., Goussiou, A. G., Govender, N., Grabowska-Bold, I., Graham, K., Gramstad, E., Grancagnolo, S., Grandi, M., Grant, C. M., Gravila, P. M., Gravili, F. G., Gray, H. M., Greco, M., Grefe, C., Gregor, I. M., Grenier, P., Grewe, S. G., Grieco, C., Grillo, A. A., Grimm, K., Grinstein, S., Grivaz, J.-F., Gross, E., Grosse-Knetter, J., Grud, C., Grundy, J. C., Guan, L., Guan, W., Gubbels, C., Rojas, J. G. R. Guerrero, Guerrieri, G., Guescini, F., Gugel, R., Guhit, J. A. M., Guida, A., Guillemin, T., Guilloton, E., Guindon, S., Guo, F., Guo, J., Guo, L., Guo, Y., Gupta, R., Gurbuz, S., Gurdasani, S. S., Gustavino, G., Guth, M., Gutierrez, P., Zagazeta, L. F. Gutierrez, Gutschow, C., Gwenlan, C., Gwilliam, C. B., Haaland, E. S., Haas, A., Habedank, M., Haber, C., Hadavand, H. K., Hadef, A., Hadzic, S., Hahn, J. J., Haines, E. H., Haleem, M., Haley, J., Hall, J. J., Hallewell, G. D., Halser, L., Hamano, K., Hamer, M., Hamity, G. N., Hampshire, E. J., Han, J., Han, K., Han, L., Han, L., Han, S., Han, Y. F., Hanagaki, K., Hance, M., Hangal, D. A., Hanif, H., Hank, M. D., Hankache, R., Hansen, J. B., Hansen, J. D., Hansen, P. H., Hara, K., Harada, D., Harenberg, T., Harkusha, S., Harris, M. L., Harris, Y. T., Harrison, J., Harrison, N. M., Harrison, P. F., Hartman, N. M., Hartmann, N. M., Hasegawa, Y., Hauser, R., Hawkes, C. M., Hawkings, R. J., Hayashi, Y., Hayashida, S., Hayden, D., Hayes, C., Hayes, R. L., Hays, C. P., Hays, J. M., Hayward, H. S., He, F., He, M., He, Y., He, Y., Heatley, N. B., Hedberg, V., Heggelund, A. L., Hehir, N. D., Heidegger, C., Heidegger, K. K., Heidorn, W. D., Heilman, J., Heim, S., Heim, T., Heinlein, J. G., Heinrich, J. J., Heinrich, L., Hejbal, J., Helary, L., Held, A., Hellesund, S., Helling, C. M., Hellman, S., Henderson, R. C. W., Henkelmann, L., Correia, A. M. Henriques, Herde, H., Jiménez, Y. Hernández, Herrmann, L. M., Herrmann, T., Herten, G., Hertenberger, R., Hervas, L., Hesping, M. E., Hessey, N. P., Hibi, H., Hill, E., Hillier, S. J., Hinds, J. R., Hinterkeuser, F., Hirose, M., Hirose, S., Hirschbuehl, D., Hitchings, T. G., Hiti, B., Hobbs, J., Hobincu, R., Hod, N., Hodgkinson, M. C., Hodkinson, B. H., Hoecker, A., Hofer, J., Holm, T., Holzbock, M., Hommels, L. B. A. H., Honan, B. P., Hong, J., Hong, T. M., Hooberman, B. H., Hopkins, W. H., Horii, Y., Hou, S., Howard, A. S., Howarth, J., Hoya, J., Hrabovsky, M., Hrynevich, A., Hryn’ova, T., Hsu, P. J., Hsu, S.-C., Hu, Q., Hu, Y. F., Huang, S., Huang, X., Huang, X., Huang, Y., Huang, Y., Huang, Z., Hubacek, Z., Huebner, M., Huegging, F., Huffman, T. B., Hugli, C. A., Huhtinen, M., Huiberts, S. K., Hulsken, R., Huseynov, N., Huston, J., Huth, J., Hyneman, R., Iacobucci, G., Iakovidis, G., Ibragimov, I., Iconomidou-Fayard, L., Iengo, P., Iguchi, R., Iizawa, T., Ikegami, Y., Ilic, N., Imam, H., Lezki, M. Ince, Carlson, T. Ingebretsen, Introzzi, G., Iodice, M., Ippolito, V., Irwin, R. K., Ishino, M., Islam, W., Issever, C., Istin, S., Ito, H., Ponce, J. M. Iturbe, Iuppa, R., Ivina, A., Izen, J. M., Izzo, V., Jacka, P., Jackson, P., Jacobs, R. M., Jaeger, B. P., Jagfeld, C. S., Jain, G., Jain, P., Jäkel, G., Jakobs, K., Jakoubek, T., Jamieson, J., Janas, K. W., Javurkova, M., Jeanneau, F., Jeanty, L., Jejelava, J., Jenni, P., Jessiman, C. E., Jézéquel, S., Jia, C., Jia, J., Jia, X., Jia, X., Jia, Z., Jiang, Y., Jiggins, S., Pena, J. Jimenez, Jin, S., Jinaru, A., Jinnouchi, O., Johansson, P., Johns, K. A., Johnson, J. W., Jones, D. M., Jones, E., Jones, P., Jones, R. W. L., Jones, T. J., Joos, H. L., Joshi, R., Jovicevic, J., Ju, X., Junggeburth, J. J., Junkermann, T., Rozas, A. Juste, Juzek, M. K., Kabana, S., Kaczmarska, A., Kado, M., Kagan, H., Kagan, M., Kahn, A., Kahn, A., Kahra, C., Kaji, T., Kajomovitz, E., Kakati, N., Kalaitzidou, I., Kalderon, C. W., Kamenshchikov, A., Kang, N. J., Kar, D., Karava, K., Kareem, M. J., Karentzos, E., Karkanias, I., Karkout, O., Karpov, S. N., Karpova, Z. M., Kartvelishvili, V., Karyukhin, A. N., Kasimi, E., Katzy, J., Kaur, S., Kawade, K., Kawale, M. P., Kawamoto, C., Kawamoto, T., Kay, E. F., Kaya, F. I., Kazakos, S., Kazanin, V. F., Ke, Y., Keaveney, J. M., Keeler, R., Kehris, G. V., Keller, J. S., Kelly, A. S., Kempster, J. J., Kennedy, K. E., Kennedy, P. D., Kepka, O., Kerridge, B. P., Kersten, S., Kerševan, B. P., Keshri, S., Keszeghova, L., Haghighat, S. Ketabchi, Khandoga, M., Khanov, A., Kharlamov, A. G., Kharlamova, T., Khoda, E. E., Kholodenko, M., Khoo, T. J., Khoriauli, G., Khubua, J., Khwaira, Y. A. R., Kilgallon, A., Kim, D. W., Kim, Y. K., Kimura, N., Kingston, M. K., Kirchhoff, A., Kirfel, C., Kirfel, F., Kirk, J., Kiryunin, A. E., Kitsaki, C., Kivernyk, O., Klassen, M., Klein, C., Klein, L., Klein, M. H., Klein, M., Klein, S. B., Klein, U., Klimek, P., Klimentov, A., Klioutchnikova, T., Kluit, P., Kluth, S., Kneringer, E., Knight, T. M., Knue, A., Kobayashi, R., Kobylianskii, D., Koch, S. F., Kocian, M., Kodyš, P., Koeck, D. M., Koenig, P. T., Koffas, T., Kolb, M., Koletsou, I., Komarek, T., Köneke, K., Kong, A. X. Y., Kono, T., Konstantinidis, N., Konya, B., Kopeliansky, R., Koperny, S., Korcyl, K., Kordas, K., Koren, G., Korn, A., Korn, S., Korolkov, I., Korotkova, N., Kortman, B., Kortner, O., Kortner, S., Kostecka, W. H., Kostyukhin, V. V., Kotsokechagia, A., Kotwal, A., Koulouris, A., Kourkoumeli-Charalampidi, A., Kourkoumelis, C., Kourlitis, E., Kovanda, O., Kowalewski, R., Kozanecki, W., Kozhin, A. S., Kramarenko, V. A., Kramberger, G., Kramer, P., Krasny, M. W., Krasznahorkay, A., Kraus, J. W., Kremer, J. A., Kresse, T., Kretzschmar, J., Kreul, K., Krieger, P., Krishnamurthy, S., Krivos, M., Krizka, K., Kroeninger, K., Kroha, H., Kroll, J., Kroll, J., Krowpman, K. S., Kruchonak, U., Krüger, H., Krumnack, N., Kruse, M. C., Krzysiak, J. A., Kuchinskaia, O., Kuday, S., Kuehn, S., Kuesters, R., Kuhl, T., Kukhtin, V., Kulchitsky, Y., Kuleshov, S., Kumar, M., Kumari, N., Kupco, A., Kupfer, T., Kupich, A., Kuprash, O., Kurashige, H., Kurchaninov, L. L., Kurdysh, O., Kurochkin, Y. A., Kurova, A., Kuze, M., Kvam, A. K., Kvita, J., Kwan, T., Kyriacou, N. G., Laatu, L. A. O., Lacasta, C., Lacava, F., Lacker, H., Lacour, D., Lad, N. N., Ladygin, E., Laforge, B., Lagouri, T., Lahbabi, F. Z., Lai, S., Lakomiec, I. K., Lalloue, N., Lambert, J. E., Lammers, S., Lampl, W., Lampoudis, C., Lancaster, A. N., Lançon, E., Landgraf, U., Landon, M. P. J., Lang, V. S., Langenberg, R. J., Langrekken, O. K. B., Lankford, A. J., Lanni, F., Lantzsch, K., Lanza, A., Lapertosa, A., Laporte, J. F., Lari, T., Manghi, F. Lasagni, Lassnig, M., Latonova, V., Laudrain, A., Laurier, A., Lawlor, S. D., Lawrence, Z., Lazzaroni, M., Le, B., Boulicaut, E. M. Le, Leban, B., Lebedev, A., LeBlanc, M., Ledroit-Guillon, F., Lee, A. C. A., Lee, S. C., Lee, S., Lee, T. F., Leeuw, L. L., Lefebvre, H. P., Lefebvre, M., Leggett, C., Miotto, G. Lehmann, Leigh, M., Leight, W. A., Leinonen, W., Leisos, A., Leite, M. A. L., Leitgeb, C. E., Leitner, R., Leney, K. J. C., Lenz, T., Leone, S., Leonidopoulos, C., Leopold, A., Leroy, C., Les, R., Lester, C. G., Levchenko, M., Levêque, J., Levin, D., Levinson, L. J., Lewicki, M. P., Lewis, D. J., Li, A., Li, B., Li, C., Li, C-Q., Li, H., Li, H., Li, H., Li, H., Li, H., Li, K., Li, L., Li, M., Li, Q. Y., Li, S., Li, S., Li, T., Li, X., Li, Z., Li, Z., Li, Z., Li, Z., Liang, S., Liang, Z., Liberatore, M., Liberti, B., Lie, K., Marin, J. Lieber, Lien, H., Lin, K., Lindley, R. E., Lindon, J. H., Lipeles, E., Lipniacka, A., Lister, A., Little, J. D., Liu, B., Liu, B. X., Liu, D., Liu, J. B., Liu, J. K. K., Liu, K., Liu, M., Liu, M. Y., Liu, P., Liu, Q., Liu, X., Liu, Y., Liu, Y. L., Liu, Y. W., Merino, J. Llorente, Lloyd, S. L., Lobodzinska, E. M., Loch, P., Loffredo, S., Lohse, T., Lohwasser, K., Loiacono, E., Lokajicek, M., Lomas, J. D., Long, J. D., Longarini, I., Longo, L., Longo, R., Paz, I. Lopez, Solis, A. Lopez, Lorenz, J., Martinez, N. Lorenzo, Lory, A. M., Centeno, G. Löschcke, Loseva, O., Lou, X., Lou, X., Lounis, A., Love, J., Love, P. A., Lu, G., Lu, M., Lu, S., Lu, Y. J., Lubatti, H. J., Luci, C., Alves, F. L. Lucio, Lucotte, A., Luehring, F., Luise, I., Lukianchuk, O., Lundberg, O., Lund-Jensen, B., Luongo, N. A., Lutz, M. S., Lux, A. B., Lynn, D., Lyons, H., Lysak, R., Lytken, E., Lyubushkin, V., Lyubushkina, T., Lyukova, M. M., Ma, H., Ma, K., Ma, L. L., Ma, Y., Donell, D. M. Mac, Maccarrone, G., MacDonald, J. C., De Abreu Farias, P. C. Machado, Madar, R., Mader, W. F., Madula, T., Maeda, J., Maeno, T., Maguire, H., Maiboroda, V., Maio, A., Maj, K., Majersky, O., Majewski, S., Makovec, N., Maksimovic, V., Malaescu, B., Malecki, Pa., Maleev, V. P., Malek, F., Mali, M., Malito, D., Mallik, U., Maltezos, S., Malyukov, S., Mamuzic, J., Mancini, G., Manco, G., Mandalia, J. P., Mandić, I., de Andrade Filho, L. Manhaes, Maniatis, I. M., Ramos, J. Manjarres, Mankad, D. C., Mann, A., Mansoulie, B., Manzoni, S., Mapekula, X., Marantis, A., Marchiori, G., Marcisovsky, M., Marcon, C., Marinescu, M., Marjanovic, M., Marshall, E. J., Marshall, Z., Marti-Garcia, S., Martin, T. A., Martin, V. J., Latour, B. Martin dit, Martinelli, L., Martinez, M., Agullo, P. Martinez, Outschoorn, V. I. Martinez, Suarez, P. Martinez, Martin-Haugh, S., Martoiu, V. S., Martyniuk, A. C., Marzin, A., Mascione, D., Masetti, L., Mashimo, T., Masik, J., Maslennikov, A. L., Massa, L., Massarotti, P., Mastrandrea, P., Mastroberardino, A., Masubuchi, T., Mathisen, T., Matousek, J., Matsuzawa, N., Maurer, J., Maček, B., Maximov, D. A., Mazini, R., Maznas, I., Mazza, M., Mazza, S. M., Mazzeo, E., Ginn, C. Mc, Gowan, J. P. Mc, Kee, S. P. Mc, McDonald, E. F., McDougall, A. E., Mcfayden, J. A., McGovern, R. P., Mchedlidze, G., Mckenzie, R. P., Mclachlan, T. C., Mclaughlin, D. J., McMahon, S. J., Mcpartland, C. M., McPherson, R. A., Mehlhase, S., Mehta, A., Melini, D., Garcia, B. R. Mellado, Melo, A. H., Meloni, F., Da Costa, A. M. Mendes Jacques, Meng, H. Y., Meng, L., Menke, S., Mentink, M., Meoni, E., Merlassino, C., Merola, L., Meroni, C., Merz, G., Meshkov, O., Metcalfe, J., Mete, A. S., Meyer, C., Meyer, J-P., Middleton, R. P., Mijović, L., Mikenberg, G., Mikestikova, M., Mikuž, M., Mildner, H., Milic, A., Milke, C. D., Miller, D. W., Miller, L. S., Milov, A., Milstead, D. A., Min, T., Minaenko, A. A., Minashvili, I. A., Mince, L., Mincer, A. I., Mindur, B., Mineev, M., Mino, Y., Mir, L. M., Lopez, M. Miralles, Mironova, M., Mishima, A., Missio, M. C., Mitra, A., Mitsou, V. A., Mitsumori, Y., Miu, O., Miyagawa, P. S., Mkrtchyan, T., Mlinarevic, M., Mlinarevic, T., Mlynarikova, M., Mobius, S., Moder, P., Mogg, P., Mohammed, A. F., Mohapatra, S., Mokgatitswane, G., Moleri, L., Mondal, B., Mondal, S., Mönig, K., Monnier, E., Romero, L. Monsonis, Berlingen, J. Montejo, Montella, M., Montereali, F., Monticelli, F., Monzani, S., Morange, N., De Carvalho, A. L. Moreira, Llácer, M. Moreno, Martinez, C. Moreno, Morettini, P., Morgenstern, S., Morii, M., Morinaga, M., Morley, A. K., Morodei, F., Morvaj, L., Moschovakos, P., Moser, B., Mosidze, M., Moskalets, T., Moskvitina, P., Moss, J., Moyse, E. J. W., Mtintsilana, O., Muanza, S., Mueller, J., Muenstermann, D., Müller, R., Mullier, G. A., Mullin, A. J., Mullin, J. J., Mungo, D. P., Perez, D. Munoz, Sanchez, F. J. Munoz, Murin, M., Murray, W. J., Murrone, A., Muškinja, M., Mwewa, C., Myagkov, A. G., Myers, A. J., Myers, A. A., Myers, G., Myska, M., Nachman, B. P., Nackenhorst, O., Nag, A., Nagai, K., Nagano, K., Nagle, J. L., Nagy, E., Nairz, A. M., Nakahama, Y., Nakamura, K., Nakkalil, K., Nanjo, H., Narayan, R., Narayanan, E. A., Naryshkin, I., Naseri, M., Nasri, S., Nass, C., Navarro, G., Navarro-Gonzalez, J., Nayak, R., Nayaz, A., Nechaeva, P. Y., Nechansky, F., Nedic, L., Neep, T. J., Negri, A., Negrini, M., Nellist, C., Nelson, C., Nelson, K., Nemecek, S., Nessi, M., Neubauer, M. S., Neuhaus, F., Neundorf, J., Newhouse, R., Newman, P. R., Ng, C. W., Ng, Y. W. Y., Ngair, B., Nguyen, H. D. N., Nickerson, R. B., Nicolaidou, R., Nielsen, J., Niemeyer, M., Niermann, J., Nikiforou, N., Nikolaenko, V., Nikolic-Audit, I., Nikolopoulos, K., Nilsson, P., Ninca, I., Nindhito, H. R., Ninio, G., Nisati, A., Nishu, N., Nisius, R., Nitschke, J-E., Nkadimeng, E. K., Nobe, T., Noel, D. L., Nommensen, T., Norfolk, M. B., Norisam, R. R. B., Norman, B. J., Novak, J., Novak, T., Novotny, L., Novotny, R., Nozka, L., Ntekas, K., De Moura Junior, N. M. J. Nunes, Nurse, E., Ocariz, J., Ochi, A., Ochoa, I., Oerdek, S., Offermann, J. T., Ogrodnik, A., Oh, A., Ohm, C. C., Oide, H., Oishi, R., Ojeda, M. L., O’Keefe, M. W., Okumura, Y., Seabra, L. F. Oleiro, Pino, S. A. Olivares, Damazio, D. Oliveira, Goncalves, D. Oliveira, Oliver, J. L., Olszewski, A., Öncel, Ö. O., O’Neill, A. P., Onofre, A., Onyisi, P. U. E., Oreglia, M. J., Orellana, G. E., Orestano, D., Orlando, N., Orr, R. S., O’Shea, V., Osojnak, L. M., Ospanov, R., Garzon, G. Otero y, Otono, H., Ott, P. S., Ottino, G. J., Ouchrif, M., Ouellette, J., Ould-Saada, F., Owen, M., Owen, R. E., Oyulmaz, K. Y., Ozcan, V. E., Ozturk, F., Ozturk, N., Ozturk, S., Pacey, H. A., Pages, A. Pacheco, Aranda, C. Padilla, Padovano, G., Griso, S. Pagan, Palacino, G., Palazzo, A., Palestini, S., Pan, J., Pan, T., Panchal, D. K., Pandini, C. E., Vazquez, J. G. Panduro, Pandya, H. D., Pang, H., Pani, P., Panizzo, G., Paolozzi, L., Papadatos, C., Parajuli, S., Paramonov, A., Paraskevopoulos, C., Hernandez, D. Paredes, Park, T. H., Parker, M. A., Parodi, F., Parrish, E. W., Parrish, V. A., Parsons, J. A., Parzefall, U., Dias, B. Pascual, Dominguez, L. Pascual, Pasqualucci, E., Passaggio, S., Pastore, F., Pasuwan, P., Patel, P., Patel, U. M., Pater, J. R., Pauly, T., Pearkes, J., Pedersen, M., Pedro, R., Peleganchuk, S. V., Penc, O., Pender, E. A., Peng, H., Penski, K. E., Penzin, M., Peralva, B. S., Peixoto, A. P. Pereira, Sanchez, L. Pereira, Perepelitsa, D. V., Codina, E. Perez, Perganti, M., Perini, L., Pernegger, H., Perrin, O., Peters, K., Peters, R. F. Y., Petersen, B. A., Petersen, T. C., Petit, E., Petousis, V., Petridou, C., Petrukhin, A., Pettee, M., Pettersson, N. E., Petukhov, A., Petukhova, K., Pezoa, R., Pezzotti, L., Pezzullo, G., Pham, T. M., Pham, T., Phillips, P. W., Piacquadio, G., Pianori, E., Piazza, F., Piegaia, R., Pietreanu, D., Pilkington, A. D., Pinamonti, M., Pinfold, J. L., Pereira, B. C. Pinheiro, Pinoargote, A. E. Pinto, Pintucci, L., Piper, K. M., Pirttikoski, A., Pizzi, D. A., Pizzimento, L., Pizzini, A., Pleier, M.-A., Plesanovs, V., Pleskot, V., Plotnikova, E., Poddar, G., Poettgen, R., Poggioli, L., Pokharel, I., Polacek, S., Polesello, G., Poley, A., Polifka, R., Polini, A., Pollard, C. S., Pollock, Z. B., Polychronakos, V., Pacchi, E. Pompa, Ponomarenko, D., Pontecorvo, L., Popa, S., Popeneciu, G. A., Poreba, A., Quintero, D. M. Portillo, Pospisil, S., Postill, M. A., Postolache, P., Potamianos, K., Potepa, P. A., Potrap, I. N., Potter, C. J., Potti, H., Poulsen, T., Poveda, J., Astigarraga, M. E. Pozo, Ibanez, A. Prades, Pretel, J., Price, D., Primavera, M., Martin, M. A. Principe, Privara, R., Procter, T., Proffitt, M. L., Proklova, N., Prokofiev, K., Proto, G., Protopopescu, S., Proudfoot, J., Przybycien, M., Przygoda, W. W., Puddefoot, J. E., Pudzha, D., Pyatiizbyantseva, D., Qian, J., Qichen, D., Qin, Y., Qiu, T., Quadt, A., Queitsch-Maitland, M., Quetant, G., Quinn, R. P., Bolanos, G. Rabanal, Rafanoharana, D., Ragusa, F., Rainbolt, J. L., Raine, J. A., Rajagopalan, S., Ramakoti, E., Ran, K., Rapheeha, N. P., Rasheed, H., Raskina, V., Rassloff, D. F., Rave, S., Ravina, B., Ravinovich, I., Raymond, M., Read, A. L., Readioff, N. P., Rebuzzi, D. M., Redlinger, G., Reed, A. S., Reeves, K., Reidelsturz, J. A., Reikher, D., Rej, A., Rembser, C., Renardi, A., Renda, M., Rendel, M. B., Renner, F., Rennie, A. G., Rescia, A. L., Resconi, S., Ressegotti, M., Rettie, S., Rivera, J. G. Reyes, Reynolds, E., Rezanova, O. L., Reznicek, P., Ribaric, N., Ricci, E., Richter, R., Richter, S., Richter-Was, E., Ridel, M., Ridouani, S., Rieck, P., Riedler, P., Riefel, E. M., Rijssenbeek, M., Rimoldi, A., Rimoldi, M., Rinaldi, L., Rinn, T. T., Rinnagel, M. P., Ripellino, G., Riu, I., Rivadeneira, P., Vergara, J. C. Rivera, Rizatdinova, F., Rizvi, E., Roberts, B. A., Roberts, B. R., Robertson, S. H., Robinson, D., Gajardo, C. M. Robles, Manzano, M. Robles, Robson, A., Rocchi, A., Roda, C., Bosca, S. Rodriguez, Garcia, Y. Rodriguez, Rodriguez, A. Rodriguez, Vera, A. M. Rodríguez, Roe, S., Roemer, J. T., Roepe-Gier, A. R., Roggel, J., Røhne, O., Rojas, R. A., Roland, C. P. A., Roloff, J., Romaniouk, A., Romano, E., Romano, M., Hernandez, A. C. Romero, Rompotis, N., Roos, L., Rosati, S., Rosser, B. J., Rossi, E., Rossi, E., Rossi, L. P., Rossini, L., Rosten, R., Rotaru, M., Rottler, B., Rougier, C., Rousseau, D., Rousso, D., Roy, A., Roy-Garand, S., Rozanov, A., Rozen, Y., Ruan, X., Jimenez, A. Rubio, Ruby, A. J., Rivera, V. H. Ruelas, Ruggeri, T. A., Ruggiero, A., Ruiz-Martinez, A., Rummler, A., Rurikova, Z., Rusakovich, N. A., Russell, H. L., Russo, G., Rutherfoord, J. P., Colmenares, S. Rutherford, Rybacki, K., Rybar, M., Rye, E. B., Ryzhov, A., Iglesias, J. A. Sabater, Sabatini, P., Sabetta, L., Sadrozinski, H.F-W., Tehrani, F. Safai, Samani, B. Safarzadeh, Safdari, M., Saha, S., Sahinsoy, M., Saimpert, M., Saito, M., Saito, T., Salamani, D., Salnikov, A., Salt, J., Salas, A. Salvador, Salvatore, D., Salvatore, F., Salzburger, A., Sammel, D., Sampsonidis, D., Sampsonidou, D., Sánchez, J., Pineda, A. Sanchez, Sebastian, V. Sanchez, Sandaker, H., Sander, C. O., Sandesara, J. A., Sandhoff, M., Sandoval, C., Sankey, D. P. C., Sano, T., Sansoni, A., Santi, L., Santoni, C., Santos, H., Santpur, S. N., Santra, A., Saoucha, K. A., Saraiva, J. G., Sardain, J., Sasaki, O., Sato, K., Sauer, C., Sauerburger, F., Sauvan, E., Savard, P., Sawada, R., Sawyer, C., Sawyer, L., Galvan, I. Sayago, Sbarra, C., Sbrizzi, A., Scanlon, T., Schaarschmidt, J., Schacht, P., Schäfer, U., Schaffer, A. C., Schaile, D., Schamberger, R. D., Scharf, C., Schefer, M. M., Schegelsky, V. A., Scheirich, D., Schenck, F., Schernau, M., Scheulen, C., Schiavi, C., Schioppa, E. J., Schioppa, M., Schlag, B., Schleicher, K. E., Schlenker, S., Schmeing, J., Schmidt, M. A., Schmieden, K., Schmitt, C., Schmitt, S., Schoeffel, L., Schoening, A., Scholer, P. G., Schopf, E., Schott, M., Schovancova, J., Schramm, S., Schroeder, F., Schroer, T., Schultz-Coulon, H-C., Schumacher, M., Schumm, B. A., Schune, Ph., Schuy, A. J., Schwartz, H. R., Schwartzman, A., Schwarz, T. A., Schwemling, Ph., Schwienhorst, R., Sciandra, A., Sciolla, G., Scuri, F., Sebastiani, C. D., Sedlaczek, K., Seema, P., Seidel, S. C., Seiden, A., Seidlitz, B. D., Seitz, C., Seixas, J. M., Sekhniaidze, G., Sekula, S. J., Selem, L., Semprini-Cesari, N., Sengupta, D., Senthilkumar, V., Serin, L., Serkin, L., Sessa, M., Severini, H., Sforza, F., Sfyrla, A., Shabalina, E., Shaheen, R., Shahinian, J. D., Renous, D. Shaked, Shan, L. Y., Shapiro, M., Sharma, A., Sharma, A. S., Sharma, P., Sharma, S., Shatalov, P. B., Shaw, K., Shaw, S. M., Shcherbakova, A., Shen, Q., Sherwood, P., Shi, L., Shi, X., Shimmin, C. O., Shinner, J. D., Shipsey, I. P. J., Shirabe, S., Shiyakova, M., Shlomi, J., Shochet, M. J., Shojaii, J., Shope, D. R., Shrestha, B., Shrestha, S., Shrif, E. M., Shroff, M. J., Sicho, P., Sickles, A. M., Haddad, E. Sideras, Sidoti, A., Siegert, F., Sijacki, Dj., Sikora, R., Sili, F., Silva, J. M., Oliveira, M. V. Silva, Silverstein, S. B., Simion, S., Simoniello, R., Simpson, E. L., Simpson, H., Simpson, L. R., Simpson, N. D., Simsek, S., Sindhu, S., Sinervo, P., Singh, S., Sinha, S., Sinha, S., Sioli, M., Siral, I., Sitnikova, E., Sivoklokov, S.Yu., Sjölin, J., Skaf, A., Skorda, E., Skubic, P., Slawinska, M., Smakhtin, V., Smart, B. H., Smiesko, J., Smirnov, S.Yu., Smirnov, Y., Smirnova, L. N., Smirnova, O., Smith, A. C., Smith, E. A., Smith, H. A., Smith, J. L., Smith, R., Smizanska, M., Smolek, K., Snesarev, A. A., Snider, S. R., Snoek, H. L., Snyder, S., Sobie, R., Soffer, A., Sanchez, C. A. Solans, Soldatov, E.Yu., Soldevila, U., Solodkov, A. A., Solomon, S., Soloshenko, A., Solovieva, K., Solovyanov, O. V., Solovyev, V., Sommer, P., Sonay, A., Song, W. Y., Sonneveld, J. M., Sopczak, A., Sopio, A. L., Sopkova, F., Alvarez, I. R. Sotarriva, Sothilingam, V., Sottocornola, S., Soualah, R., Soumaimi, Z., South, D., Soybelman, N., Spagnolo, S., Spalla, M., Sperlich, D., Spigo, G., Spinali, S., Spiteri, D. P., Spousta, M., Staats, E. J., Stabile, A., Stamen, R., Stampekis, A., Standke, M., Stanecka, E., Stange, M. V., Stanislaus, B., Stanitzki, M. M., Stapf, B., Starchenko, E. A., Stark, G. H., Stark, J., Starko, D. M., Staroba, P., Starovoitov, P., Stärz, S., Staszewski, R., Stavropoulos, G., Steentoft, J., Steinberg, P., Stelzer, B., Stelzer, H. J., Stelzer-Chilton, O., Stenzel, H., Stevenson, T. J., Stewart, G. A., Stewart, J. R., Stockton, M. C., Stoicea, G., Stolarski, M., Stonjek, S., Straessner, A., Strandberg, J., Strandberg, S., Stratmann, M., Strauss, M., Strebler, T., Strizenec, P., Ströhmer, R., Strom, D. M., Strom, L. R., Stroynowski, R., Strubig, A., Stucci, S. A., Stugu, B., Stupak, J., Styles, N. A., Su, D., Su, S., Su, W., Su, X., Sugizaki, K., Sulin, V. V., Sullivan, M. J., Sultan, D. M. S., Sultanaliyeva, L., Sultansoy, S., Sumida, T., Sun, S., Sun, S., Gudnadottir, O. Sunneborn, Sur, N., Sutton, M. R., Suzuki, H., Svatos, M., Swatman, S. N., Swiatlowski, M., Swirski, T., Sykora, I., Sykora, M., Sykora, T., Ta, D., Tackmann, K., Taffard, A., Tafirout, R., Vargas, J. S. Tafoya, Takeva, E. P., Takubo, Y., Talby, M., Talyshev, A. A., Tam, K. C., Tamir, N. M., Tanaka, A., Tanaka, J., Tanaka, R., Tanasini, M., Tao, Z., Araya, S. Tapia, Tapprogge, S., Mohamed, A. Tarek Abouelfadl, Tarem, S., Tariq, K., Tarna, G., Tartarelli, G. F., Tas, P., Tasevsky, M., Tassi, E., Tate, A. C., Tateno, G., Tayalati, Y., Taylor, G. N., Taylor, W., Teagle, H., Tee, A. S., De Lima, R. Teixeira, Teixeira-Dias, P., Teoh, J. J., Terashi, K., Terron, J., Terzo, S., Testa, M., Teuscher, R. J., Thaler, A., Theiner, O., Themistokleous, N., Theveneaux-Pelzer, T., Thielmann, O., Thomas, D. W., Thomas, J. P., Thompson, E. A., Thompson, P. D., Thomson, E., Tian, Y., Tikhomirov, V., Tikhonov, Yu.A., Timoshenko, S., Timoshyn, D., Ting, E. X. L., Tipton, P., Tlou, S. H., Tnourji, A., Todome, K., Todorova-Nova, S., Todt, S., Togawa, M., Tojo, J., Tokár, S., Tokushuku, K., Toldaiev, O., Tombs, R., Tomoto, M., Tompkins, L., Topolnicki, K. W., Torrence, E., Torres, H., Pastor, E. Torró, Toscani, M., Tosciri, C., Tost, M., Tovey, D. R., Traeet, A., Trandafir, I. S., Trefzger, T., Tricoli, A., Trigger, I. M., Trincaz-Duvoid, S., Trischuk, D. A., Trocmé, B., Troncon, C., Truong, L., Trzebinski, M., Trzupek, A., Tsai, F., Tsai, M., Tsiamis, A., Tsiareshka, P. V., Tsigaridas, S., Tsirigotis, A., Tsiskaridze, V., Tskhadadze, E. G., Tsopoulou, M., Tsujikawa, Y., Tsukerman, I. I., Tsulaia, V., Tsuno, S., Tsur, O., Tsuri, K., Tsybychev, D., Tu, Y., Tudorache, A., Tudorache, V., Tuna, A. N., Turchikhin, S., Cakir, I. Turk, Turra, R., Turtuvshin, T., Tuts, P. M., Tzamarias, S., Tzanis, P., Tzovara, E., Ukegawa, F., Poblete, P. A. Ulloa, Umaka, E. N., Unal, G., Unal, M., Undrus, A., Unel, G., Urban, J., Urquijo, P., Urrejola, P., Usai, G., Ushioda, R., Usman, M., Uysal, Z., Vacavant, L., Vacek, V., Vachon, B., Vadla, K. O. H., Vafeiadis, T., Vaitkus, A., Valderanis, C., Santurio, E. Valdes, Valente, M., Valentinetti, S., Valero, A., Moreno, E. Valiente, Vallier, A., Ferrer, J. A. Valls, Arneman, D. R. Van, Daalen, T. R. Van, Graaf, A. Van Der, Gemmeren, P. Van, Rijnbach, M. Van, Stroud, S. Van, Vulpen, I. Van, Vanadia, M., Vandelli, W., Vandenbroucke, M., Vandewall, E. R., Vannicola, D., Vannoli, L., Vari, R., Varnes, E. W., Varni, C., Varol, T., Varouchas, D., Varriale, L., Varvell, K. E., Vasile, M. E., Vaslin, L., Vasquez, G. A., Vasyukov, A., Vazeille, F., Schroeder, T. Vazquez, Veatch, J., Vecchio, V., Veen, M. J., Veliscek, I., Veloce, L. M., Veloso, F., Veneziano, S., Ventura, A., Gonzalez, S. Ventura, Verbytskyi, A., Verducci, M., Vergis, C., De Araujo, M. Verissimo, Verkerke, W., Vermeulen, J. C., Vernieri, C., Vessella, M., Vetterli, M. C., Vgenopoulos, A., Maira, N. Viaux, Vickey, T., Boeriu, O. E. Vickey, Viehhauser, G. H. A., Vigani, L., Villa, M., Perez, M. Villaplana, Villhauer, E. M., Vilucchi, E., Vincter, M. G., Virdee, G. S., Vishwakarma, A., Visibile, A., Vittori, C., Vivarelli, I., Voevodina, E., Vogel, F., Vokac, P., Volkotrub, Yu., Ahnen, J. Von, Toerne, E. Von, Vormwald, B., Vorobel, V., Vorobev, K., Vos, M., Voss, K., Vossebeld, J. H., Vozak, M., Vozdecky, L., Vranjes, N., Milosavljevic, M. Vranjes, Vreeswijk, M., Vuillermet, R., Vujinovic, O., Vukotic, I., Wada, S., Wagner, C., Wagner, J. M., Wagner, W., Wahdan, S., Wahlberg, H., Wakida, M., Walder, J., Walker, R., Walkowiak, W., Wall, A., Wamorkar, T., Wang, A. Z., Wang, C., Wang, C., Wang, H., Wang, J., Wang, R.-J., Wang, R., Wang, R., Wang, S. M., Wang, S., Wang, T., Wang, W. T., Wang, W., Wang, X., Wang, X., Wang, X., Wang, Y., Wang, Y., Wang, Z., Wang, Z., Wang, Z., Warburton, A., Ward, R. J., Warrack, N., Watson, A. T., Watson, H., Watson, M. F., Watton, E., Watts, G., Waugh, B. M., Weber, C., Weber, H. A., Weber, M. S., Weber, S. M., Wei, C., Wei, Y., Weidberg, A. R., Weik, E. J., Weingarten, J., Weirich, M., Weiser, C., Wells, C. J., Wenaus, T., Wendland, B., Wengler, T., Wenke, N. S., Wermes, N., Wessels, M., Wharton, A. M., White, A. S., White, A., White, M. J., Whiteson, D., Wickremasinghe, L., Wiedenmann, W., Wiel, C., Wielers, M., Wiglesworth, C., Wilbern, D. J., Wilkens, H. G., Williams, D. M., Williams, H. H., Williams, S., Willocq, S., Wilson, B. J., Windischhofer, P. J., Winkel, F. I., Winklmeier, F., Winter, B. T., Winter, J. K., Wittgen, M., Wobisch, M., Wolffs, Z., Wollrath, J., Wolter, M. W., Wolters, H., Wongel, A. F., Worm, S. D., Wosiek, B. K., Woźniak, K. W., Wozniewski, S., Wraight, K., Wu, C., Wu, J., Wu, M., Wu, M., Wu, S. L., Wu, X., Wu, Y., Wu, Z., Wuerzinger, J., Wyatt, T. R., Wynne, B. M., Xella, S., Xia, L., Xia, M., Xiang, J., Xie, M., Xie, X., Xin, S., Xiong, A., Xiong, J., Xu, D., Xu, H., Xu, L., Xu, R., Xu, T., Xu, Y., Xu, Z., Xu, Z., Xu, Z., Yabsley, B., Yacoob, S., Yamaguchi, Y., Yamashita, E., Yamauchi, H., Yamazaki, T., Yamazaki, Y., Yan, J., Yan, S., Yan, Z., Yang, H. J., Yang, H. T., Yang, S., Yang, T., Yang, X., Yang, X., Yang, Y., Yang, Y., Yang, Z., Yao, W-M., Yap, Y. C., Ye, H., Ye, H., Ye, J., Ye, S., Ye, X., Yeh, Y., Yeletskikh, I., Yeo, B. K., Yexley, M. R., Yin, P., Yorita, K., Younas, S., Young, C. J. S., Young, C., Yu, C., Yu, Y., Yuan, M., Yuan, R., Yue, L., Zaazoua, M., Zabinski, B., Zaid, E., Zakareishvili, T., Zakharchuk, N., Zambito, S., Saa, J. A. Zamora, Zang, J., Zanzi, D., Zaplatilek, O., Zeitnitz, C., Zeng, H., Zeng, J. C., Zenger, D. T., Zenin, O., Ženiš, T., Zenz, S., Zerradi, S., Zerwas, D., Zhai, M., Zhang, B., Zhang, D. F., Zhang, J., Zhang, J., Zhang, K., Zhang, L., Zhang, P., Zhang, R., Zhang, S., Zhang, T., Zhang, X., Zhang, X., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Z., Zhang, Z., Zhao, H., Zhao, P., Zhao, T., Zhao, Y., Zhao, Z., Zhemchugov, A., Zheng, J., Zheng, K., Zheng, X., Zheng, Z., Zhong, D., Zhou, B., Zhou, H., Zhou, N., Zhou, Y., Zhu, C. G., Zhu, J., Zhu, Y., Zhu, Y., Zhuang, X., Zhukov, K., Zhulanov, V., Zimine, N. I., Zinsser, J., Ziolkowski, M., Živković, L., Zoccoli, A., Zoch, K., Zorbas, T. G., Zormpa, O., Zou, W., and Zwalinski, L.
- Abstract
Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous ppinteractions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60ppcollisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.
- Published
- 2024
- Full Text
- View/download PDF
14. Are changes in meniscus volume and extrusion associated to knee osteoarthritis development? A structural equation model.
- Author
-
Xu, D., van der Voet, J., Waarsing, J.H., Oei, E.H., Klein, S., Englund, M., Zhang, F., Bierma-Zeinstra, S., and Runhaar, J.
- Abstract
Objective: To explore the interplay between (changes in) medial meniscus volume, meniscus extrusion and radiographic knee osteoarthritis (OA) development over 30 months follow-up (FU).Methods: Data from the PRevention of knee Osteoarthritis in Overweight Females study were used. This cohort included 407 middle-aged women with a body mass index ≥27 kg/m2, who were free of knee OA at baseline. Demographics were collected by questionnaires at baseline. All menisci at both baseline and FU were automatically segmented from MRI scans to obtain the meniscus volume and the change over time (delta volume). Baseline and FU meniscus body extrusion was quantitatively measured on mid-coronal proton density MR images. A structural equation model was created to assess the interplay between both medial meniscus volume and central extrusion at baseline, delta volume, delta extrusion, and incident radiographic knee OA at FU.Results: The structural equation modeling yielded a fair to good fit of the data. The direct effects of both medial meniscus volume and extrusion at baseline on incident OA were statistically significant (Estimate = 0.124, p = 0.029, and Estimate = 0.194, p < 0.001, respectively). Additional indirect effects on incident radiographic OA through delta meniscus volume or delta meniscus extrusion were not statistically significant.Conclusion: Baseline medial meniscus volume and extrusion were associated to incidence of radiographic knee OA at FU in middle-aged overweight and obese women, while their changes were not involved in these effects. To prevent knee OA, interventions might need to target the onset of meniscal pathologies rather than their progression. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
15. 281 Abrocitinib attenuates the systemic inflammatory profile in patients with atopic dermatitis
- Author
-
Del Duca, E., Kim, M., Da Rosa, J. Correa, Pulsinelli, J., Estrada, Y., Chan, G., Chen, A., Xu, D., Güler, E., Page, K., Kerkmann, U., and Guttman-Yassky, E.
- Published
- 2024
- Full Text
- View/download PDF
16. Surveying image segmentation approaches in astronomy
- Author
-
Xu, D. and Zhu, Y.
- Abstract
Image segmentation plays a critical role in unlocking the mysteries of the universe, providing astronomers with a clearer perspective on celestial objects within complex astronomical images and data cubes. Manual segmentation, while traditional, is not only time-consuming but also susceptible to biases introduced by human intervention. As a result, automated segmentation methods have become essential for achieving robust and consistent results in astronomical studies. This review begins by summarizing traditional and classical segmentation methods widely used in astronomical tasks. Despite the significant improvements these methods have brought to segmentation outcomes, they fail to meet astronomers’ expectations, requiring additional human correction, further intensifying the labor-intensive nature of the segmentation process. The review then focuses on the transformative impact of machine learning, particularly deep learning, on segmentation tasks in astronomy. It introduces state-of-the-art machine learning approaches, highlighting their applications and the remarkable advancements they bring to segmentation accuracy in both astronomical images and data cubes. As the field of machine learning continues to evolve rapidly, it is anticipated that astronomers will increasingly leverage these sophisticated techniques to enhance segmentation tasks in their research projects. In essence, this review serves as a comprehensive guide to the evolution of segmentation methods in astronomy, emphasizing the transition from classical approaches to cutting-edge machine learning methodologies. We encourage astronomers to embrace these advancements, fostering a more streamlined and accurate segmentation process that aligns with the ever-expanding frontiers of astronomical exploration.
- Published
- 2024
- Full Text
- View/download PDF
17. The effect of PCSK9 inhibitors on brain stroke prevention: A systematic review and meta-analysis.
- Author
-
Qin, Jin, Liu, Lin, Su, Xu D., Wang, Bin B., Fu, Bao S., Cui, Jun Z., and Liu, Xiao Y.
- Abstract
Background and Aims: Although proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been shown to improve cardiovascular outcomes, their effects on brain stroke risk are unclear. The present meta-analysis aimed to evaluate the effects of PCSK9 inhibitors on brain stroke prevention.Methods and Results: We searched PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov for research published until December 30, 2020, to find randomized controlled trials (RCTs) of PCSK9 inhibitors for brain stroke prevention. Relative risk (RR) and 95% confidence intervals (CIs) were used to represent the outcomes. Seven RCTs with 57,440 participants, including 29,850 patients treated with PCSK9 inhibitors and 27,590 control participants, were included. PCSK9 inhibitors were associated with significant reductions in total brain stroke risk (RR, 0.77; 95% CI, 0.67-0.88; P < 0.001) and ischemic brain stroke risk (RR, 0.76; 95% CI, 0.66, 0.89; P < 0.001) in comparison with the control group. There was no significant difference in cardiovascular mortality (RR, 0.95; 95% CI, 0.84-1.07; P = 0.382) and the risk of hemorrhagic brain stroke (RR, 1.00; 95% CI, 0.66-1.51; P = 0.999) between patients treated with PCSK9 inhibitors and controls. PCSK9 inhibitors did not significantly increase the incidence of neurocognitive adverse events (RR, 1.02; 95% CI, 0.81-1.29; P = 0.85). Moreover, subgroup analysis showed no difference in cognitive function disorder risks among different PCSK9 inhibitors and treatment times.Conclusions: PCSK9 inhibitors significantly reduced the risk of total brain stroke and ischemic brain stroke without increasing the risk of brain hemorrhage and neurocognitive impairment. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
18. Reconstruction of Cherenkov image by multiple telescopes of LHAASO-WFCTA
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Zhe, Cao, Zhen, Chang, J., Chang, J. F., Chen, E. S., Chen, Liang, Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, H. L., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., D’Ettorre Piazzoli, B., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., Duan, K. K., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, W. H., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Levochkin, K., Li, B. B., Li, Cheng, Li, Cong, Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Long, W. J., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Min, Z., Mitthumsiri, W., Nan, Y. C., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. Y., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R., Wang, R. N., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yan, J. Z., Yang, C. W., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, Lu, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Y. L., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Abstract
Introduction: One of main scientific goals of the Large High Altitude Air Shower Observatory (LHAASO) is to accurately measure the energy spectra of different cosmic ray compositions around the ‘knee’ region. The Wide Field-of-View (FoV) Cherenkov Telescope Array (WFCTA), which is one of the main detectors of LHAASO and has 18 telescopes, is built to achieve this goal. Multiple telescopes are put together and point to connected directions for a larger FoV. Method: Telescopes are deployed spatially as close as possible, but due to their own size, the distance between two adjacent telescopes is about 10 m. Therefore, the Cherenkov lateral distribution and the parallax between the two telescopes should be considered in the event building process for images crossing over the boundaries of FoVs of the telescopes. An event building method for Cherenkov images measured by multiple telescopes of WFCTA is developed. The performance of the shower measurements using the combined images is evaluated by comparing with showers that are fully contained by a virtual telescope in simulation. Results and conclusion: It is proved that the developed event building process can help to increase the FoV of WFCTA by 30% while maintaining the same reconstruction quality, compared to the separate telescope reconstruction method.
- Published
- 2022
- Full Text
- View/download PDF
19. Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Z., Cao, Z., Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, L., Chen, L., Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Volpe, D. della, Piazzoli, B. D’Ettorre, Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, C., Li, C., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, X., Li, X. R., Li, Y., Li, Y. Z., Li, Z., Li, Z., Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z., Wang, Z., Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, L., Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y., Zhang, Y., Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Abstract
Purpose: Observation of high energy and very high emission from Gamma Ray Bursts (GRBs) is crucial to study the gigantic explosion and the underline processes. With a large field-of-view and almost full duty cycle, the Water Cherenkov Detector Array (WCDA), a sub-array of the Large High Altitude Air Shower Observatory (LHAASO), is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs. Method: Nevertheless, the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector. To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation. Result: The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV. The sensitivity of the WCDA for GRB detection with the new trigger method is estimated. The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT. The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example.
- Published
- 2021
- Full Text
- View/download PDF
20. Androgen receptor inhibition alleviated inflammation in experimental autoimmune myocarditis by increasing autophagy in macrophages.
- Author
-
MA, W.-H., ZHANG, X.-G., GUO, L.-L., ZHANG, J.-B., WEI, F.-T., LU, Q.-H., DU, H., KONG, Y.-R., WANG, X., and XU, D.-L.
- Abstract
OBJECTIVE: Experimental autoimmune myocarditis (EAM) is characterized by pronounced macrophage infiltration, cardiac necrosis, and cardiac fibrosis. Our previous studies have demonstrated that suppressed androgen receptor (AR) enables anti-inflammation to promote tissue repair by decreasing M1 macrophages and increasing M2 macrophages in an EAM model. Given that autophagy mediates inflammatory response in macrophages, we investigated whether AR inhibition executes its protective role in inflammation through the autophagy pathway in EAM. MATERIALS AND METHODS: To determine whether AR inhibition can perform its anti-inflammatory effects by upregulating autophagy, we pre-treated mice with 3-methyl adenine (3-MA), a pharmacological inhibitor of autophagy. Immunofluorescence assay and Western blot were used to detect autophagy levels and autophagy activity in five different groups. Immunofluorescence marked F4/80 and LC3 to illustrate the autophagy level in macrophages. TUNEL assays were used to detect the apoptosis level in heart tissue of five different groups. RESULTS: We demonstrated that AR inhibition resolves injury with sustained inhibition of inflammatory cytokines associated with enhanced autophagy, especially in macrophages. Increased LC3II/I expression corroborated complete autolysosome formation detected by electron microscopy and correlated with degradation of SQSTM1/p62 in the AR inhibition group by Western blot. These effects could be reversed within 3-MA, a pharmacological inhibitor of autophagy. Specifically, pharmacological inhibition of autophagy increased apoptosis and inflammation, which could be attenuated by AR inhibition. CONCLUSIONS: AR inhibition alleviates the inflammatory response and tissue apoptosis by enhancing autophagy, especially in macrophages. [ABSTRACT FROM AUTHOR]
- Published
- 2021
21. A generalised force equivalence-based modelling method for a dry wind-tunnel flutter test system.
- Author
-
Zhang, Z., Gao, B., Wang, J., Xu, D., Chen, G., and Yao, W.
- Abstract
Dry wind-tunnel (DWT) flutter test systems model the unsteady distributed aerodynamic force using various electromagnetic exciters. They can be used to test the aeroelastic and aeroservoelastic stability of smart aircraft or high-speed flight vehicles. A new parameterised modelling method at the full system level based on the generalised force equivalence for DWT flutter systems is proposed herein. The full system model includes the structural dynamic model, electromechanical coupling model and fast aerodynamic computation model. An optimisation search method is applied to determine the best locations for measurement and excitation by introducing Fisher's information matrix. The feasibility and accuracy of the proposed system-level numerical DWT modelling method have been validated for a plate aeroelastic model with four exciters/transducers. The effects of key parameters including the number of exciters, the control time delay, the noise interference and the electrical parameters of the electromagnetic exciter model have also been investigated. The numerical and experimental results indicate that the proposed modelling method achieves good accuracy (with deviations of less than 1.5% from simulations and 4.5% from experimental test results for the flutter speed) and robust performance even in uncertain environments with a 10% noise level. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
22. Protective effect of estrogen receptors (ERα/β) against the intervertebral disc degeneration involves activating CCN5 via the promoter.
- Author
-
SONG, M.-X., MA, X.-X., WANG, C., WANG, Y., SUN, C., XU, D.-R., ZHU, K., LI, G.-H., ZHAO, H., and ZHANG, C.
- Abstract
OBJECTIVE: Due to the decrease of estrogen and estrogen receptor (ER) in postmenopausal women, they have a higher risk of intervertebral disc degeneration (IDD) than men. This study aims to explore how ERα and ERβ interact with CCN5 and protect IDD. PATIENTS AND METHODS: We used Chromatin immunoprecipitation (ChIP) and Luciferase reporter assay to determine whether the ERα/β protein binds to CCN5 promoter and activates its expression. We used TNF-α to induce nucleus pulposus (NP) cell degeneration to simulate the IDD process. The change of the expression of ERα/β and CCN5 was measured in the degenerated NP cells. To understand the function of ERα/β in the NP cells degeneration, we upregulated the ERα/β gene expression by vector transfection or 17β-estradiol (E2) stimulation. Besides, we also used the CCN5 gene-silenced NP cells by siRNA transfection as a comparison to determine the role of CCN5. We tested the cell proliferation and principal components of the extracellular matrix (ECM) to value the degree of NP cell degeneration. RESULTS: ERα and ERβ protein can bind to the same promoter regions of CCN5 and activate its expression, respectively. TNF-α degraded NP cells with a reduction of cell proliferation, collagen II, ACAN, ERα, ERβ, and CCN5 expression, and increased collagen I/III, and MMP-13 expression. Upregulated ERα or ERβ resulted in the maintains of CCN5 and alleviated the NP cell degeneration. Besides, 17β-E2 supplement increased the ERα, ERβ, and CCN5 expression, as well as stable NP cells phenotype. However, it was partly abolished by the silencing of CCN5. CONCLUSIONS: Upregulation of ERα and ERβ protects the NP cell degeneration during IDD through the activation of CCN5 by binding to its promoter. [ABSTRACT FROM AUTHOR]
- Published
- 2021
23. Electromagnetic interference shielding characteristics of a core layer-coated fabric with excellent hand-feel characteristics.
- Author
-
Xu, D, Yang, WW, Jiang, HM, Fan, H, and Liu, KS
- Abstract
Electromagnetic shielding fabric (ESF) is a novel electromagnetic shielding product with portability, flexibility, and good mechanical properties. However, the existing ESFs suffer from poor washing fastness of coating and poor comfort performance in terms of hand-feel characteristic. In this study, a core layer-coated yarn (CLCY) was successfully spun using a carboxylic acid-functionalized multi-walled carbon nanotube/polypyrrole/Fe
3 O4 composite suspension with polyvinyl butyral as an adhesive agent. To better explore the properties, the original fabric and treated fabrics, viz., core layer-coated fabric (CLCF) and surface layer-coated fabric (SLCF), were characterized by several methods. Scanning electron microscopic observations revealed that the coating was on the core layer in CLCF. In addition, the Fourier-transform infrared spectroscopy and X-ray diffraction spectroscopy results revealed that the composition of the coating corresponds with that in the multi-composite suspension. Moreover, the coating of CLCY formed a conductive path with good conductivity in the core layer, but the conductivity of the coating on the surface layer of SLCF deteriorated sharply after washing. Further, compared with the original fabric and SLCF, CLCF has highest breaking strength (after 10 washes), and keeps a relatively good hand-feel characteristic. Finally, the evaluated electromagnetic interference shielding characteristics reveal that the fastness of coating affects the electromagnetic shielding effectiveness, suggesting that the wrapped protection of outside staple fibers in CLCF reduce the loss of coating in the core layer during washing. However, the coating on the surface layer in SLCF could be washed away easily. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
24. Circular RNA circ_0000034 upregufates STX17 level to promote human retinoblastoma development inhibiting miR-361-3p.
- Author
-
LIU, H., YUAN, H.-F., XU, D., CHEN, K.-J., TAN, N., and ZHENG, Q.-J.
- Abstract
OBJECTIVE: Retinoblastoma (RB) is a common intraocular tumor of infancy and childhood. Circular RNAs (circRNAs) are related to the development of RB. The purpose of this research was to reveal the functional mechanism of circRNA circ_0000034 in RB. MATERIALS AND METHODS: Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Western blot were applied to determine the levels of genes. MTT assay and flow cytometry were employed to assess cell proliferation and apoptosis rate, respectively. Furthermore, cell migratory and invasive abilities were measured using the transwell assay. Mouse xenograft was conducted to analyze the effect of circ_0000034 on tumor growth in vivo. Besides, the interaction between miR-361-3p and circ_0000034 or syntaxin 17 (STX17) was predicted by starBase, and then, confirmed by the Dual-Luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: The levels of circ_0000034 and STX17 were increased and miR-361-3p level was decreased in RB tissues and cells. Circ_0000034 knockdown suppressed cell proliferation, migration, invasion, autophagy, and tumor growth, and induced apoptosis in RB. Circ_0000034 targeted miR-361-3p and miR-361-3p bound to STX17. Circ_0000034 overexpression and miR-361-3p knockdown reversed the effect of miR-361-3p upregulation and STX17 depletion on the growth of RB cells, respectively. Besides, circ_0000034 elevated STX17 level by repressing miR-361-3p expression. CONCLUSIONS: We demonstrated that circ_0000034 knockdown suppressed the development of RB by the modulation of miR-361-3p/STX17 axis. Our findings provided a theoretical basis for the treatment of RB. [ABSTRACT FROM AUTHOR]
- Published
- 2020
25. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources
- Author
-
Cao, Zhen, Aharonian, F. A., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Zhe, Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, Liang, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, della Volpe, D., D′Ettorre Piazzoli, B., Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, Cong, Li, Cheng, Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, Xin, Li, X. R., Li, Y., Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Zheng, Wang, Zhen, Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, Li, Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Yong, Zhang, Yi, Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Abstract
The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 1015electronvolts) indicates the existence of the so-called PeVatrons—cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays1. The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane3–6, unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators.
- Published
- 2021
- Full Text
- View/download PDF
26. MiR-20a suppresses proliferation and facilitates apoptosis of breast cancer cells via the MTOR signaling pathway.
- Author
-
SHI, K.-Y., FAN, L.-Y., XU, D., REN, L.-P., WANG, L.-P., CHEN, L.-Y., and WANG, L.-J.
- Abstract
OBJECTIVE: The paper aimed to explore the role of micro ribonucleic acid (miR)- 20a in regulating the proliferation and apoptosis of breast cancer cells. MATERIALS AND METHODS: The expression of miR-20a in breast cancer cells was analyzed via quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) assay. Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry were employed to analyze the proliferation and apoptosis of cells. Thereafter, the target proteins of miR-20a were predicted using TargetScan, a website for miRNA target gene prediction, and the interaction between miR-20a and the target genes was detected through the Luciferase reporter gene assay, qRT-PCR assay, and Western blotting. Finally, the miR-20a inhibitor and target gene expression plasmids were co-transfected for rescue experiment to study whether the target genes participate in the inhibitory effect of miR-20a on the proliferation of breast cancer cells. RESULTS: It was found that the expression of miR-20a was upregulated in breast cancer cell lines. Silencing miR-20a expression inhibited the proliferation and promoted the apoptosis of breast cancer cell. Besides, it was demonstrated that late endosomal/lysosomal adaptor, mitogen- activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) activator 3 (LAMTOR3) were a direct target of miR-20a. The knockdown of LAMTOR3 expression repressed the influence of miR-20a on the proliferation of breast cancer cells. CONCLUSIONS: MiR-20a targets LAMTOR3 gene to regulate the mTOR signaling pathway, thereby suppressing the proliferation and facilitating the apoptosis of breast cancer cells. It suggests that miR-20a exerts a carcinogenic effect in breast cancer, which may be a potential target for the treatment of breast cancer. [ABSTRACT FROM AUTHOR]
- Published
- 2020
27. LncRNA FOXC2-AS1 stimulates proliferation of melanoma via silencing p15 by recruiting EZH2.
- Author
-
XU, D.-F., TAO, X.-H., YU, Y., TENG, Y., HUANG, Y.-M., MA, J.-W., and FAN, Y.-B.
- Abstract
OBJECTIVE: The aim of this study was to elucidate the role of FOXC2-AS1 in promoting the proliferative ability and inhibiting apoptosis of melanoma by silencing p15, thereafter regulating the progression of melanoma. PATIENTS AND METHODS: FOXC2-AS1 levels in melanoma patients with or without metastasis and those with the tumor in different stages were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Regulatory effects of FOXC2-AS1 on viability and apoptosis in melanoma cells were assessed, and subcellular distribution of FOXC2-AS1 was analyzed. Subsequently, the interactions of FOXC2-AS1 with EZH2 and SUZ12 were explored by RNA-Binding Protein Immunoprecipitation (RNA-RIP) assay. Through chromatin immunoprecipitation (ChIP) assay, the role of FOXC2-AS1 to regulate p15 transcription by recruiting EZH2 was verified. At last, regulatory effects of FOXC2-AS1/p15 axis on viability and apoptosis in melanoma cells were investigated. RESULTS: It was found that FOXC2-AS1 was upregulated in melanoma tissues, especially those with metastasis or stage II-IV. Melanoma patients expressing high level of FOXC2-AS1 showed worse survival than those with low level. Knockdown of FOXC2-AS1 inhibited viability, and stimulated apoptosis in A375 and sk-mel-110 cells. Besides, P15 level was upregulated in melanoma cells transfected with si-FOXC2-AS1, and FOXC2-AS1 was mainly distributed in cytoplasm. RNA-RIP assay confirmed that FOXC2- AS1 was mainly enriched in anti-EZH2 and aniti- SUZ12. Knockdown of EZH2 could markedly upregulate protein level of p15 in melanoma cells. Furthermore, it was verified that FOXC2- AS1 inhibited p15 transcription via recruiting EZH2, and the knockdown of p15 could partially reverse the regulatory effects of FOXC2-AS1 on viability and apoptosis in melanoma. CONCLUSIONS: FOXC2-AS1 stimulates proliferative ability in melanoma via silencing p15. [ABSTRACT FROM AUTHOR]
- Published
- 2020
28. Experimental study on synergistic effect of HIFU treatment of tumors using Bifidobacterium bound with cationic phase-change nanoparticles.
- Author
-
JIANG, B.-L., GAO, X., XIONG, J., ZHU, P.-Y., LUO, Y., XU, D., TANG, Y., WANG, Y.-T., CHEN, C., YANG, H.-Y., QIAO, H., and ZOU, J.-Z.
- Abstract
OBJECTIVE: Anaerobic bacteria can enter the solid tumor in the hypoxic region to colonize and proliferate. Aggregation of nanoparticles in the tumor area can enhance molecular imaging and therapy. It is hypothesized that the combination of the two could possibly achieve better imaging and tumor treatment. This study presents a biocompatible bacteria- based system that can deliver cationic phase-change nanoparticles (CPNs) into solid tumor to achieve enhanced imaging and treatment integration. MATERIALS AND METHODS: Cationic phasechange nanoparticles (CPNs) and Bifidobacterium longum (BF) were mixed to determine the best binding rate and were placed in an agar phantom for ultrasonography. BF-CPNs complex adhesion to breast cancer cells was observed by laser confocal microscopy. In vivo, BF-CPNs and control groups were injected into tumors in breast cancer nude mouse models. Nanoparticles distribution was observed by ultrasound and in vivo fluorescence imaging. HIFU ablation was performed after injection. Gross and histological changes were compared and synergy was evaluated. RESULTS: Bifidobacterium longum (BF) and CPNs were combined by electrostatic adsorption. The BF-CPNs particles could increase the deposition of energy after liquid-gas phasechange during High Intensity Focused Ultrasound (HIFU) irradiation of tumor. CONCLUSIONS: This study shows a valid method in diagnosis and therapy integration for providing stronger imaging, longer retention time, and more effective tumor treatment. [ABSTRACT FROM AUTHOR]
- Published
- 2020
29. Electromagnetic interference shielding characteristics of a core layer-coated fabric with excellent hand-feel characteristics.
- Author
-
Xu, D., Yang, W. W., Jiang, H. M., Fan, H., and Liu, K. S.
- Abstract
Electromagnetic shielding fabric (ESF) is a novel electromagnetic shielding product with portability, flexibility, and good mechanical properties. However, the existing ESFs suffer from poor washing fastness of coating and poor comfort performance in terms of hand-feel characteristic. In this study, a core layer-coated yarn (CLCY) was successfully spun using a carboxylic acid-functionalized multi-walled carbon nanotube/polypyrrole/Fe3O4 composite suspension with polyvinyl butyral as an adhesive agent. To better explore the properties, the original fabric and treated fabrics, viz., core layer-coated fabric (CLCF) and surface layer-coated fabric (SLCF), were characterized by several methods. Scanning electron microscopic observations revealed that the coating was on the core layer in CLCF. In addition, the Fouriertransform infrared spectroscopy and X-ray diffraction spectroscopy results revealed that the composition of the coating corresponds with that in the multi-composite suspension. Moreover, the coating of CLCY formed a conductive path with good conductivity in the core layer, but the conductivity of the coating on the surface layer of SLCF deteriorated sharply after washing. Further, compared with the original fabric and SLCF, CLCF has highest breaking strength (after 10 washes), and keeps a relatively good hand-feel characteristic. Finally, the evaluated electromagnetic interference shielding characteristics reveal that the fastness of coating affects the electromagnetic shielding effectiveness, suggesting that the wrapped protection of outside staple fibers in CLCF reduce the loss of coating in the core layer during washing. However, the coating on the surface layer in SLCF could be washed away easily. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
30. LncRNA GIHCG regulates microRNA-1281 and promotes malignant progression of breast cancer.
- Author
-
FAN, L.-Y., SHI, K.-Y., XU, D., REN, L.-P., YANG, P., ZHANG, L., WANG, F., and SHAO, G.-L.
- Abstract
OBJECTIVE: This study aimed to investigate the expression characteristics of long non-coding RNA (lncRNA) GIHCG in breast cancer (BCa), and further investigate its role in BCa and its relationship with clinical characteristics and prognosis. PATIENTS AND METHODS: Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) was performed to examine GIHCG expression in 53 pairs of BCa tumor tissues and adjacent tissues. The interaction between the level of GIHCG and the clinical indicators of BCa and the prognosis of patients was then analyzed. Lentivirus was transfected into BCa cell lines to construct the GIHCG knockdown model. The cell counting kit-8 (CCK-8), cell cloning, and 5-Ethynyl-2’-deoxyuridine (EdU) assays were performed to analyze the influence of GIHCG on the biological function of BCa cells, as well as to explore whether it could play a role via modulating microRNA-1281. RESULTS: QRT-PCR results showed that the GIHCG level was remarkably higher in the BCa tumor tissue than in adjacent ones. Compared with patients with low expression of GIHCG, patients with high expression of GIHCG had higher pathological grades and a lower overall survival. Besides, the proliferation ability of BCa cells in GIHCG knockdown group was significantly decreased compared with NC group. QRT-PCR results indicated that silencing GIHCG increased the expression of miR-1281, thereby promoting the malignant progression of BCa. Also, the silence of miR-1281 reversed the effect of GIHCG on the proliferative capacity of BCa, thus increasing the cell anti-apoptotic ability. CONCLUSIONS: GIHCG levels were remarkably increased in both BCa tissues and cells, which was related to the pathological stage and poor prognosis of BCa patients. Besides, GIHCG might promote the malignant progression of BCa by inhibiting microRNA-1281. [ABSTRACT FROM AUTHOR]
- Published
- 2019
31. MA17.09 BAP1 Deficiency Inflames the TME & is a Candidate Biomarker for Improved Immunotherapy in Malignant Pleural Mesothelioma
- Author
-
Xu, D., Gao, Y., Yang, H., Marti, T.M., Losmanova, T., Dorn, P., Shu, Y., and Peng, R.
- Published
- 2023
- Full Text
- View/download PDF
32. P2.21-09 Single-Cell Dissection Reveals Mesothelial Heterogeneity and Dysfunctional Immunity in Malignant Pleural Mesothelioma
- Author
-
Xu, D., Peng, R.-W., Shu, Y., and Yang, H.
- Published
- 2023
- Full Text
- View/download PDF
33. 28nm pitch single exposure patterning readiness by metal oxide resist on 0.33NA EUV lithography
- Author
-
Felix, Nelson M., Lio, Anna, De Simone, D., Kljucar, L., Das, P., Blanc, R., Beral, C., Severi, J., Vandenbroeck, N., Foubert, P., Charley, A., Oak, A., Xu, D., Gillijns, W., Mitard, J., Tokei, Z., van der Veen, M., Heylen, N., Teugels, L., Le, Q. T., Schleicher, F., Leray, P., Ronse, K., Kim, Il Hwan, Kim, Insung, Park, Changmin, Lee, Jisun, Ryu, Koungmin, De Schepper, P., Doise, J., and Kocsis, M.
- Published
- 2021
- Full Text
- View/download PDF
34. A dynamic range extension system for LHAASO WCDA-1
- Author
-
Aharonian, F., An, Q., Axikegu, Bai, L. X., Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, H., Cai, J. T., Cao, Z., Cao, Z., Chang, J., Chang, J. F., Chang, X. C., Chen, B. M., Chen, J., Chen, L., Chen, L., Chen, L., Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, X. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Volpe, D. della, Piazzoli, B. D’Ettorre, Dong, X. J., Fan, J. H., Fan, Y. Z., Fan, Z. X., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, Y. L., Gao, B., Gao, C. D., Gao, Q., Gao, W., Ge, M. M., Geng, L. S., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, J. G., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. C., He, S. L., He, X. B., He, Y., Heller, M., Hor, Y. K., Hou, C., Hou, X., Hu, H. B., Hu, S., Hu, S. C., Hu, X. J., Huang, D. H., Huang, Q. L., Huang, W. H., Huang, X. T., Huang, Y., Huang, Z. C., Ji, F., Ji, X. L., Jia, H. Y., Jiang, K., Jiang, Z. J., Jin, C., Kuleshov, D., Levochkin, K., Li, B. B., Li, C., Li, C., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, K., Li, W. L., Li, X., Li, X., Li, X. R., Li, Y., Li, Y. Z., Li, Z., Li, Z., Liang, E. W., Liang, Y. F., Lin, S. J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. S., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y. N., Liu, Z. X., Long, W. J., Lu, R., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Masood, A., Mitthumsiri, W., Montaruli, T., Nan, Y. C., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Ruffolo, D., Rulev, V., Sáiz, A., Shao, L., Shchegolev, O., Sheng, X. D., Shi, J. R., Song, H. C., Stenkin, Yu. V., Stepanov, V., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Z. B., Tian, W. W., Wang, B. D., Wang, C., Wang, H., Wang, H. G., Wang, J. C., Wang, J. S., Wang, L. P., Wang, L. Y., Wang, R. N., Wang, W., Wang, W., Wang, X. G., Wang, X. J., Wang, X. Y., Wang, Y. D., Wang, Y. J., Wang, Y. P., Wang, Z., Wang, Z., Wang, Z. H., Wang, Z. X., Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, W. X., Wu, X. F., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, G., Xiao, H. B., Xin, G. G., Xin, Y. L., Xing, Y., Xu, D. L., Xu, R. X., Xue, L., Yan, D. H., Yang, C. W., Yang, F. F., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Zeng, H. D., Zeng, T. X., Zeng, W., Zeng, Z. K., Zha, M., Zhai, X. X., Zhang, B. B., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, J. W., Zhang, L., Zhang, L., Zhang, L. X., Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y., Zhang, Y., Zhang, Y. F., Zhang, Y. L., Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, Y., Zhou, B., Zhou, H., Zhou, J. N., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., and Zuo, X.
- Abstract
Purpose: The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV. To observe high-energy shower events, especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV, a dynamic range extension system (WCDA++) is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1. Method: The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events, which is an important parameter for identifying the composition of primary particles. Result and Conclusion: The system has been running for more than one year. In this paper, the details of the design and performance of WCDA++ are presented.
- Published
- 2021
- Full Text
- View/download PDF
35. Association Of Knee Meniscus Volume With OA Risk Single Nucleotide Polymorphisms In An Overweight And Obese Population.
- Author
-
Xu, D., Hansson, N., Van Meurs, J., Oei, E., Bierma-Zeinstra, S., Klein, S., and Runhaar, J.
- Published
- 2023
- Full Text
- View/download PDF
36. An Acylase from Shewanella PutrefaciensPresents a Vibrio ParahaemolyticusAcylhomoserine Lactone-Degrading Activity and Exhibits Temperature-, Ph- and Metal-Dependences
- Author
-
Fang, Z., Sun, D., Gao, J., Guo, M., Sun, L., Wang, Y., Liu, Y., Wang, R., Deng, Q., Xu, D., and Gooneratne, R.
- Published
- 2020
- Full Text
- View/download PDF
37. PPAR? inhibits breast cancer progression by upregulating PTPRF expression.
- Author
-
XU, Y.-Y., LIU, H., SU, L., XU, N., XU, D.-H., LIU, H.-Y., SPANER, D., BED-DAVID, Y., and LI, Y.-J.
- Abstract
OBJECTIVE: Peroxisome proliferator-activated receptor γ (PPARγ) regulates fatty acid storage and glucose metabolism. Recently, PPARγ has been reported to be involved in cancer. The present study reported a PPARγ consensus binding site (AGGTCA) in the ptprf promoter and identified a strong association between PPARγ and PTPRF expression, as well as their tumor suppressor roles in a v-Ha-Ras-induced model of breast cancer. MATERIALS AND METHODS: The prognostic potential of PPARγ was assessed with a KM analysis of raw data from 3,951 breast cancer patients. The expression of PPARγ and PTPRF in the rat breast cancer cell lines was detected by Western blot and qPCR. The impact of PPARγ on cancer cell migration, invasion, and growth was confirmed using cell migration assay, transwell cell invasion assay, tri-dimensional soft agar culture, respectively. The binding of PPARγ with the ptprf promoter was then examined using electrophoretic mobility shift assay. The inhibitory effect of PPARγ on tumor growth was then examined in mouse tumor model in vivo. RESULTS: It was identified that PPARγ expression is lost in the aggressive v-Ha-Ras-induced breast cancer cell line FE1.2 but highly expressed in less malignant FE1.3 cells. Exogenous expression of PPARγ in FE1.2 cells (FE1.2-PPARγhi) resulted in a marked inhibition of proliferation compared with that in FE1.2-Vector control group. FE1.2-PPARγhi cells also exhibited reduced migration, invasion, and colony formation abilities compared with those of the controls. The PPARγ agonist rosiglitazone also suppressed the malignant properties of FE1.2 cells. Protein tyrosine phosphatase receptor F (PTPRF), a downstream target of PPARγ, was markedly induced in FE1.2- PPARγhi cells. A PPARγ consensus binding site (AGGTCA) was identified in the ptprf promoter, and an electrophoretic mobility shift assay confirmed that PPARγ bind to this promoter. Similar to the effect of vector-mediated overexpression of PPARγ, ectopic overexpression of PTPRF in FE1.2 cells led to reduced proliferation. Furthermore, a PPARγ antagonist (GW9662) and PTP inhibitor (NSC87877) abrogated the suppressive function of PPARγ and PTPRF in FE1.2 cells, respectively. PPARγ overexpression or activation suppressed the progression and distant organ metastasis of breast cancer cells in a NOD/SCID mouse model. CONCLUSIONS: These results suggest that PPARγ inhibits tumor cell proliferation, at least in part, through direct regulation of the ptprf gene and that PPARγ is a potential target for breast cancer treatment. [ABSTRACT FROM AUTHOR]
- Published
- 2019
38. Influence of Environmental Variables on Benthic Macroinvertebrate Communities in a Shallow Eutrophic Lowland Lake (Ge Lake, China).
- Author
-
Li, D., Cai, K., Li, X., Giesy, J. P., Niu, Z., Cai, Y., Dai, J., Xu, D., Zhou, X., Liu, H., and Yu, H.
- Subjects
BENTHIC ecology ,POLLUTANTS ,DISSOLVED oxygen in water ,INVERTEBRATE communities ,LAKES ,WATER temperature ,COMMUNITY organization - Abstract
Shallow lowland lakes are critical components of the water cycle, providing an essential service function. However, the impacts of microcystin from phytoplankton communities on benthic macroinvertebrate community diversity and structure have seldom been investigated. During 2008-2012, the impacts of water environmental variables on the diversity of macrobenthic communities, including water temperature, pH, dissolved oxygen, transparency, conductivity, the permanganate index, Chlorophyll a, total phosphorus, total nitrogen, and microcystin-LR (L for leucine and R for arginine), were measured in a typical shallow lowland lake, Ge Lake. The results of the present study demonstrated that there were 31 benthic macroinvertebrate taxa in Ge Lake, including 7 oligochaetes, 7 Mollusca, 14 chironomids, and 3 other taxa. Among the macrobenthic taxa in the benthic community, opportunistic taxa such as Limnodrilus hoffmeisteri are present and can occur at greater densities in disturbed habitats. However, a significant reduction/disappearance of sensitive and clean taxa was observed among the benthic macroinvertebrates. Water temperature, dissolved oxygen, conductivity, ammonia nitrogen, transparency and total phosphorus were the main environmental variables influencing macrobenthic community structure, while water temperature, conductivity, ammonia nitrogen, Chlorophyll a, the permanganate index, total phosphorus and total nitrogen were the main factors that influenced macrobenthic community diversity indices (the numbers of taxa, Shannon's diversity index, Margalef's richness index, and Pielou's evenness index). Our results underscore the severity of the effects of human activity on Ge Lake and strongly suggest that restoring the benthic invertebrate community to previous conditions would require the control and reduction of environmental pollutants and nutrients in Ge Lake. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
39. β4GalT1 promotes inflammation in human osteoarthritic fibroblast-like synoviocytes by enhancing autocrine TNF-α activity.
- Author
-
XU, D.-W., ZHU, X.-H., HE, M.-Q., YUAN, Q., and DONG, Q.-R.
- Abstract
OBJECTIVE: Synovial inflammation plays an important role in the pathogenesis of osteoarthritis (OA), and β4GalT1 has been reported to be involved in the inflammatory process. The aim of our study was to investigate the role of β4GalT1 in the progression of inflammation and analyze the association between β4GalT1 and tumor necrosis factor (TNF)-α in human OA fibroblast-like synoviocytes (FLS). PATIENTS AND METHODS: Primary cultured FLS isolated from OA synovial tissues were cultured, and the levels of β4GalT1, TNF-α, MMP-3, p/t-ERK, p/t-JNK, and p/t-P38 were analyzed by Western blotting. An enzyme-linked immunosorbent assay (ELISA) was performed to measure the secretion of TNF-α, interleukin (IL)-1β, and IL-6 in OA-FLS. Immunofluorescence staining was used to examine the co-localization of β4GalT1 and TNF-α or THY1. RT-PCR was used to detect the transfection efficiency of β4GalT1. RESULTS: The expression of β4GalT1 was increased in OA-FLS. β4GalT1 promoted cell invasion, MMP-3 production, and the secretion of TNF-α, IL-1β, and IL-6. si-TNF-α attenuated the β4GalT1-enhanced cell invasion and inflammatory factor secretion in OA-FLS. Furthermore, β4GalT1 increased autocrine TNF-α signaling in OA-FLS. β4GalT1 knockdown successfully decreased autocrine TNF-α activity, while β4GalT1 overexpression increased autocrine TNF-α activity in OA-FLS. Moreover, β4GalT1 enhanced the ERK, JNK, and P38 MAPK signaling pathways through the induction of autocrine TNF-α signaling in OA-FLS. CONCLUSIONS: β4GalT1 may promote the inflammatory progression of OA-FLS by enhancing autocrine TNF-α signaling. [ABSTRACT FROM AUTHOR]
- Published
- 2019
40. CKS2 promotes tumor progression and metastasis and is an independent predictor of poor prognosis in epithelial ovarian cancer.
- Author
-
XU, J.-H., WANG, Y., and XU, D.
- Abstract
OBJECTIVE: Accumulating evidence showed that dysregulation of cyclin-dependent kinases regulatory subunit 2 (CKS2) could contribute to tumor growth and metastasis of several tumors. However, its expression and function in epithelial ovarian cancer (EOC) have not been investigated. Here, we aimed to investigate the role of CKS2 in EOC. PATIENTS AND METHODS: Real-time PCR and Western blotting were used to determine the mRNA and protein expression of CKS2 in EOC tissues and cell lines. Then, the associations of CKS2 expression with clinicopathological features and patient's overall survival were determined. Proliferation assay flow cytometric analysis and transwell assay were performed to detect the relation between CKS2 and malignant behaviors of EOC cells. We also evaluated the expression of related proteins of the Akt/mTOR pathway to determine the associated molecular mechanism. RESULTS: We found that CKS2 expression was significantly up-regulated in both EOC tissues and cell lines. Clinically, high expression of CKS2 was associated with advanced FIGO stage, histological grade and shorter overall survival of EOC patients. We also found that knockdown of CKS2 suppressed proliferation, invasion, and migration of EOC cells in vitro, and CKS2 could promote EMT progress by modulating EMT-related molecules. Finally, Western blot demonstrated that down-regulation of CKS2 suppressed the expression of p-Akt and p-mTOR. CONCLUSIONS: Our findings indicated that CKS2 might function as a tumor promoter by modulating Akt/mTOR pathway in EOC and could serve as a promising prognostic biomarker for EOC. [ABSTRACT FROM AUTHOR]
- Published
- 2019
41. Astrocytes induce proliferation of oligodendrocyte progenitor cells via connexin 47-mediated activation of Chi3l1 expression.
- Author
-
JIANG, L., XU, D., ZHANG, W.-J., TANG, Y., and PENG, Y.
- Abstract
OBJECTIVE: Demyelinating neurodegenerative diseases are some of the most important neurological diseases that threaten the health of the elderly. Astrocytes (ASTs) play an important role in the regulation of the growth and development of oligodendrocytes (OLs) and oligodendrocyte progenitor cells (OPCs), which participate in remyelination. This study investigated the mechanism by which ASTs promote the proliferation of OPCs via connexin 47 (Cx47) in OPCs. MATERIALS AND METHODS: Under direct-contact co-culture conditions, we performed Cx47 siRNA interference in ASTs and OPCs and tested the cell proliferation ability by flow cytometry and with 5-ethynyl-20-deoxyuridine (EdU). We then detected Chi3l1 expression by Western blotting and immunofluorescence. Next, after the addition of exogenous Chi3l1 protein to OPCs under monoculture conditions, we tested the cell proliferation ability by flow cytometry and EdU. RESULTS: After siRNA interference with Cx47, the expression of Chi3l1 decreased from 1.10±0.91 to 0.30±0.08, and the proportion of new OPCs decreased from 48.7±3.8% to 28.4±6.6%. Moreover, upon addition of exogenous Chi3l1 protein under OPCs mono-culture conditions, the expression of cyclin D1 increased from 0.68±0.09 to 1.16±0.14, leading to an increased number of OPCs in the S phase, from 7.37±1.38% to 13.55±1.60%. CONCLUSIONS: Cx47/Chi3l1 plays an important role in the promotion of OPCs proliferation by ASTs. ASTs can promote the expression of Chi3l1 via Cx47 in OPCs, and then activate the expression of cyclin D1 and regulate the cell cycle of OPCs, thereby promoting cell proliferation. This study provides a new target for the treatment of neurodegenerative diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2019
42. Association of serum uric acid change with mortality, renal function and diuretic dose administered in treatment of acute heart failure.
- Author
-
Zhou, H.-B., Xu, T.-Y., Liu, S.-R., Bai, Y.-J., Huang, X.-F., Zhan, Q., Zeng, Q.-C., and Xu, D.-L.
- Abstract
Background and Aims: Hyperuricemia is reportedly associated with poor outcome in acute heart failure (AHF). The association between changes in Uric acid (UA) levels with renal function change, diuretic doses, and mortality in patients with AHF were studied.Methods and Results: Consecutive patients hospitalized with AHF were reviewed (n = 535). UA levels were measured at admission and either at discharge or on approximately the seventh day of admission. Patients with an UA change in the top tertile were defined as having an increase (UA-increase) and were compared to those outside the top tertile (non-UA-increase). The endpoint was all-cause mortality, with a mean follow-up duration of 22.2 months. Patients in the UA-increase group presented with greater creatine increase (P < 0.001), and were administered a higher average daily dose of loop diuretic (P = 0.016) compared with the non-UA-increase group. In-hospital UA-increase was associated with higher risk of mortality even after adjusting for confounding variables including creatine change and diuretic dosage [harzard ratio (HR) 1.53, 95% confidence interval (CI) 1.02-2.30, P = 0.042]. In patients with hyperuricemia on admission, UA-increase was associated with increased mortality (adjusted HR 2.21, 95% CI 1.38-3.52, P = 0.001). Whereas, in those without admission hyperuricemia, UA-increase had no significant association with mortality.Conclusions: An increase in UA during in-hospital treatment is associated with an increase in creatine levels and daily diuretic dose. Mortality associated with increased UA is restricted to patients who already have hyperuricemia at admission. A combination of UA levels at admission and UA changes on serial assessment during hospitalization may be additional value in the risk stratification of AHF patients. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
43. MicroRNA-625-3p promotes cell migration of oral squamous cell carcinoma by regulating SCAI expression.
- Author
-
XU, D., GU, M., and LIU, H.-L.
- Abstract
OBJECTIVE: The aim of this study was to investigate the role of microRNA- 625-3p in the occurrence and progression of oral squamous cell carcinoma (OSCC) and its underlying mechanism. PATIENTS AND METHODS: Expression levels of microRNA-625-3p, SCAI and E-cadherin in OSCC tissues and paracancerous tissues were detected by quantitative real time-polymerase chain reaction (qRT-PCR). MicroRNA-625-3p expression in OSCC tissues with different tumor stages and lymph node metastasis stages was analyzed. Survival analyses were conducted to access the diagnostic values of microRNA- 625-3p and SCAI in OSCC. The effect of microRNA-625-3p on regulating cell migration of OSCC was detected by transwell assay. Luciferase reporter gene assay was conducted to verify the binding condition between microRNA- 625-3p and SCAI. Rescue experiments were performed by co-transfection of microRNA- 625-3p inhibitor and si-SCAI, followed by cell proliferation detection. RESULTS: MicroRNA-625-3p was highly expressed in OSCC tissues than that of paracancerous tissues. OSCC patients with T3+T4 presented higher expression of microRNA-625-3p than those with T1+T2. Similarly, OSCC patients with N1+N2 presented higher expression of microRNA- 625-3p than those with N0. Luciferase reporter gene assay identified that SCAI is the target gene of microRNA-625-3p. Furthermore, we found that SCAI and E-cadherin are lowly expressed in OSCC tissues than that of paracancerous tissues. ROC curve showed that microRNA- 625-3p and SCAI exert certain values in diagnosing OSCC. MicroRNA-625-3p promoted migration of OSCC cells, which was reversed by SCAI knockdown. CONCLUSIONS: MicroRNA-625-3p is highly expressed in OSCC, which promotes cell migration of OSCC by regulating SCAI expression. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
44. Nitrogen-Rich Nanoporous Carbon with MXene Composite for High-Performance Zn-ion Hybrid Capacitors
- Author
-
Zhao, Doudou, Xu, Da, Wang, Tiantian, Yang, Zhenglong, Zhao, D., Xu, D., Wang, T., and Yang, Z.
- Abstract
The zinc-ion hybrid capacitor, as a novel energy storage system with outstanding electrochemical performance, low cost, and high safety, has attracted widespread research attention. In this work, we report a hetero-structured composite material, C2N@MXene, obtained by alternately stacking porous carbon material C2N with MXene nanosheets. Theoretical calculations and a series of ex-situ characterizations reveal that the introduction of MXene nanosheets not only exposes more active sites of C2N, but also significantly enhances the conductivity and stability of the overall composite material, thereby achieving excellent electrochemical energy storage performance. Consequently, as a cathode material for zinc-ion hybrid capacitors, C2N @MXene achieves a high specific capacity of 240 mA h g−1at 0.1 A g−1and exhibits outstanding rate performance from 1 to 20 A g−1. And the capacitance retention rate remains as high as 94 %, after 10000 cycles of charge-discharge at a current density of 5 A g−1. Moreover, based on the C2N @MXene electrode, flexible zinc ion micro-capacitor with high area-specific capacity of 264 mF cm−2was fabricated using laser cutting technology. We believe that this work provides new research strategies for developing high-performance zinc-ion hybrid capacitors.
- Published
- 2024
- Full Text
- View/download PDF
45. An Examination of the Growth Kinetics of l-Arginine Trifluoroacetate (LATF) Crystals from Induction Period and Atomic Force Microscopy Investigations
- Author
-
Liu, X. J., Xu, D., Ren, M. J., Zhang, G. H., Wei, X. Q., and Wang, J.
- Abstract
In this study, the induction period (tind) of l-arginine trifluoroacetate (LATF) at different levels of supersaturation have been examined at 298.15 K for both spontaneous and seeded growth systems. From the dependence of tindon supersaturation, it was possible to distinguish between the mechanisms of homogeneous and heterogeneous nucleation. On the basis of the experimental data pertaining to the homogeneous nucleation, the solid−liquid interfacial energy can be evaluated. Additionally, in the process of ascertaining the growth mechanism of LATF as two-dimensional (2D) nucleation-mediated growth using by theoretical expressions, a combined analysis of results in both experiments provides information about the growth and nucleation rate constants. Eventually, analysis of atomic force microscopy investigations on the facets of LATF crystals corroborates the 2D nucleation-mediated growth mechanism.
- Published
- 2024
- Full Text
- View/download PDF
46. Effects of miR-155 on hypertensive rats via regulating vascular mesangial hyperplasia.
- Author
-
XU, D., LIAO, R., WANG, X.-X., and CHENG, Z.
- Abstract
OBJECTIVE: Vascular smooth muscle cell (VSMC) excessive proliferation is related to hypertension. The cell cycle inhibitory factor (p27) can arrest cell cycle, while its down-regulation is associated with hypertension. It is found that microRNA-155 (miR-155) plays a regulatory role in VSMC proliferation, while its relationship with hypertension is still unclear. Bioinformatics analysis reveals the targeted relationship between miR-155 and the 3'- UTR of p27 mRNA. This study aims to explore the role of miR-155 in regulating p27 expression, VSMC proliferation and apoptosis, and the pathogenesis of hypertension. MATERIALS AND METHODS: Dual luciferase reporter gene assay confirmed the relationship between miR-155 and p27. MiR-155, p27, α-smooth muscle actin (α-SMA), and Ki- 67 expressions in the thoracic aorta media of rat hypertension model were detected. VSMCs were cultured in vitro and divided into five groups, including anti-miR-NC, anti-miR-155, pIRES2-blank, pIRES2-p27, and anti-miR-155 + pIRES2-p27 groups. Cell cycle was evaluated by using flow cytometry. Cell proliferation was detected with EdU staining. Hypertension rats were randomly divided into antagomir-155 and antagomir-control. Caudal artery systolic and diastolic pressures were measured. RESULTS: MiR-155 targeted suppressed p27 expression. MiR-155 and Ki-67 expressions significantly enhanced, while p27 and α-SMA levels reduced in the tunica media from hypertension rats compared with control. Down-regulation of miR-155 and/or up-regulation of p27significantly declined cell proliferation and arrested cell cycle in G1 phase. Antagomir-155 injection markedly decreased systolic and diastolic pressures, elevated p27 and α-SMA expressions in media, and reduced the thickness of tunica media. CONCLUSIONS: MiR-155 promoted VSMC proliferation by targeting p27. MiR-155 enhancement was related to hypertension. MiR-155 played a therapeutic effect on hypertension. [ABSTRACT FROM AUTHOR]
- Published
- 2018
47. Expressions of VEGF and miR-21 in tumor tissues of cervical cancer patients with HPV infection and their relationships with prognosis.
- Author
-
YUAN, Y., MIN, S. J., XU, D. Q., SHEN, Y., YAN, H. Y., WANG, Y., WANG, W., and TAN, Y. J.
- Abstract
OBJECTIVE: To investigate the expressions of vascular endothelial growth factor (VEGF) and micro-ribonucleic acid-21 (miR-21) in cervical cancer patients with human papillomavirus (HPV) infection and determine the potential relationships with prognosis. PATIENTS AND METHODS: Expressions of VEGF in cervical cancer tissues and cancer-adjacent tissues were detected by immunohistochemistry, and the expressions of miR-21 and VEGF in both tissues were quantitatively analyzed using reverse transcription polymerase chain reaction (RT-PCR). Patients with cervical cancer were followed up after operation, and the survival rates of patients with different expression levels of miR-21 and VEGF were compared. RESULTS: VEGF was expressed in both cervical cancer tissues and cancer-adjacent tissues. The positive expression rate of VEGF in cervical cancer tissues (75.69%) was significantly higher than that in cancer-adjacent tissues (10.45%). RTPCR results showed that the expression levels of miR-21 and VEGF in cervical cancer tissues were significantly higher than those in cancer-adjacent tissues (p<0.05). Correlation analyses revealed that miR-21 expression was significantly positively correlated with VEGF expression in cervical cancer tissues (r2=0.4174, p<0.0001). Prognostic analyses showed that the 5-year survival rate of patients was relatively high when miR-21 and VEGF were lowly expressed. CONCLUSIONS: VEGF and miR-21 are highly expressed in tumor tissues of cervical cancer patients with HPV infection. VEGF expression is significantly positively correlated with miR-21 expression, and the high levels of VEGF and miR-21 predict unfavorable prognosis of cervical cancer. Data provide a theoretical support for clinical treatment of cervical cancer patients with HPV infection. [ABSTRACT FROM AUTHOR]
- Published
- 2018
48. UPK1B promotes the invasion and metastasis of bladder cancer via regulating the Wnt/β-catenin pathway.
- Author
-
WANG, F.-H., MA, X.-J., XU, D., and LUO, J.
- Abstract
OBJECTIVE: The aim of this study was to investigate the expression of UPK1B in bladder cancer (BCa), and to further explore the correlation between UPK1B expression and pathological parameters as well as the prognosis of BCa. PATIENTS AND METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of UPK1B in 92 pairs of BCa tissues and adjacent normal tissues. The relationship between UPK1B expression and pathological features as well as the prognosis of BCa patients was further analyzed. For in vitro experiments, the mRNA expression level of UPK1B in BCa cell lines (EJ and T-24) was detected by qRT-PCR. In addition, knockdown of UPK1B in BCa cells was constructed using small interfering RNA. Effects of UPK1B knockdown on biological functions of BCa cells were analyzed by Cell Counting Kit-8 (CCK-8), colony formation assay and transwell assay, respectively. Furthermore, the underlying mechanism of UPK1B in regulating BCa was evaluated by Western blot and qRT-PCR, respectively. RESULTS: The expression of UPK1B in BCa tissues was remarkably higher than that of adjacent normal tissues (p<0.05). Compared with BCa patients with lower UPK1B expression, those with higher UPK1B expression exhibited higher tumor stage, lymph node metastasis and distant metastasis. In vitro experiments indicated that cell proliferation, invasion and metastasis were remarkably decreased in cells transfected with si-UPK1B when compared with those transfected with negative controls. Western blot showed that the expression of key proteins in the Wnt/β-catenin signaling pathway in cells transfected with si-UPK1B was significantly down-regulated compared with those transfected with negative controls, including β-catenin, c-myc and cyclinD1. In addition, rescue experiments found that UPK1B was regulated by β-catenin. CONCLUSIONS: UPK1B is upregulated in BCa, and is significantly correlated with tumor stage, lymph node metastasis, distant metastasis and poor prognosis of BCa. Moreover, UPK1B promotes the proliferation, invasion and migration of BCa via regulating the Wnt/β-catenin signaling pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2018
49. MiR-363-3p modulates cell growth and invasion in glioma by directly targeting pyruvate dehydrogenase B.
- Author
-
XU, D. X., GUO, J. J., ZHU, G. Y., WU, H. J., ZHANG, Q. S., and CUI, T.
- Abstract
OBJECTIVE: This study is designed to investigate the role of miR-363-3p in the cancer development of glioma. PATIENTS AND METHODS: The expression of miR-363-3p in glioma and adjacent noncancerous tissue was measured using quantitative RT-PCR. The expression of a target gene of miR- 363-3p, pyruvate dehydrogenase B (PDHB), was determined by Western blot. The level of miR- 363-3p was increased or decreased by transfected with miR-363-3p mimic or miR-363-3p inhibitor, respectively. The impact of miR-363-3p on cell growth, apoptosis and invasion was determined by CCK-8 (Cell Counting Kit) assay, flow cytometry, and transwell assay. The role of PDHB in mediating the oncogenic activities was demonstrated by co-transfected PDHB vector and miR-363-3p mimic. RESULTS: Our results have shown that miR-3663-3p level was significantly higher in glioma tissue. Furthermore, miR-363-3p functions as onco-miRNA, promotes cell proliferation, protects against apoptosis, and enhances invasion by directly targeting PDHB. CONCLUSIONS: MiR-363-3p is an onco-miRNA, which can be considered as a potential therapeutic target in glioma. [ABSTRACT FROM AUTHOR]
- Published
- 2018
50. Long noncoding RNA RUSC1-AS-N indicates poor prognosis and increases cell viability in hepatocellular carcinoma.
- Author
-
TANG, R., WU, J.-C., ZHENG, L.-M., LI, Z.-R., ZHOU, K.-L., ZHANG, Z.-S., XU, D.-F., and CHEN, C.
- Abstract
OBJECTIVE: This study aimed at exploring the expression and prognostic values of a novel long noncoding RNA RUSC1-AS-N in hepatocellular carcinoma (HCC), and to investigate the biological roles of RUSC1-AS-N in HCC cells. PATIENTS AND METHODS: RUSC1-AS-N expression in public available microarray data was analyzed. The expression of RUSC1-AS-N in our cohort containing 66 HCC tissues and paired adjacent non-cancerous hepatic tissues was measured by qRT-PCR. The correlation between RUSC1-AS-N expression and clinicopathological characteristics was evaluated by Pearson χ
2 - test. The prognostic value of RUSC1-AS-N was analyzed by Kaplan-Meier survival analysis. The biological roles of RUSC1-AS-N on HCC cell viability were evaluated by Glo cell viability assays and Ethynyl deoxyuridine incorporation assays. The effects of RUSC1-AS-N on HCC cell cycle were evaluated by fluorescence-activated cell sorting (FACS) analyses of propidium-iodide (PI) stained cells. The effects of RUSC1-AS-N on HCC cell apoptosis were evaluated by TdT-mediated dUTP nick end-labeling (TUNEL) assays. RESULTS: RUSC1-AS-N is upregulated in HCC tissues and associated with poor prognosis of HCC patients from GSE54238 and GSE40144. In our cohort, we further confirmed the upregulation of RUSC1-AS-N in HCC tissues. High expression of RUSC1-AS-N associates with large tumor size, vein invasion, encapsulation incompletion, advanced BCLC stage, and poor recurrence-free survival and overall survival. Functional assays revealed that RUSC1-AS-N knockdown markedly decreases cell viability, induces cell-cycle arrest and apoptosis of HCC cells. CONCLUSIONS: RUSC1-AS-N is upregulated and acts as an oncogene in HCC. RUSC1-AS-N may be a promising prognostic biomarker and therapeutic target for HCC. [ABSTRACT FROM AUTHOR]- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.