11 results on '"Silver, R B"'
Search Results
2. Permeability of rat heart myocytes to cytochrome c
- Author
-
Sarti, P., Silver, R. B., Paroli, L., Nikonorov, I., and Blanck, T. J. J.
- Abstract
Rat heart myocytes undergoing progressive damage demonstrate morphological changes of shortening and swelling followed by the formation of intracellular vacuoles and plasma membrane blebbing. The damaged myocytes displayed impaired N,N'-tetramethyl-p-phenyldiamine (TMPD) ascorbate-stimulated respiratory activity which was restored by the addition of reduced cytochrome c to the cell culture medium. To clarify the role played by cytochrome c in the impairment of cell respiration, polarographic, spectrophotometric and fluorescence as well as electron microscopy imaging experiments were performed. TMPD/ascorbate-stimulated respiratory activity returned to control levels, at approximately 20 M cytochrome c, establishing the threshold below which the turnover rate by cytochrome c oxidase in the cell depends on cytochrome c concentration. Mildly damaged cardiac myocytes, as indicated by cell shortening, retention of visible striations and free-fluorescein exclusion, together with the absence of lactate dehydrogenase leakage and exclusion of trypan blue, were able to oxidize exogenous cytochrome c and were permeable to fluorescein-conjugated cytochrome c. The results, while consistent with an early cytochrome c release observed at the beginning of cell death, elucidate the role played by cytochrome c in the kinetic control of mitochondrial electron transfer under pathological conditions, particularly those involving the terminal part of the respiratory chain. These data are the first to demonstrate that the sarcolemma of cardiac myocytes, damaged but still viable, is permeable to cytochrome c.
- Published
- 1999
- Full Text
- View/download PDF
3. Mitosis in sand dollar embryos is inhibited by antibodies directed against the calcium transport enzyme of muscle.
- Author
-
Silver, R B
- Abstract
Monospecific antibodies to the calcium transport enzyme (alpha-Ca pump) inhibit mitosis when microinjected into sand dollar embryos. Immunoglobulins were raised against the calcium transport enzyme (Ca pump) of sarcoplasmic reticulum (SR) from rat skeletal muscle and guinea pig ileum smooth muscle. Specific antibodies were further isolated from IgG fractions by using electrophoretically purified SR Ca-pump protein as the immobilized ligand for immunoaffinity chromatography. ELISA demonstrated that common antigenic determinants are shared by SR, SR Ca pump (of rat skeletal and guinea pig ileum smooth muscle), and isolated membrane containing "native" mitotic apparatus (MA). Preimmune sera gave negative results in identical control assays. Triton X-100 extraction of MA removes the Ca-pump antigen. SR Ca pump and the MA Ca pump have nearly identical molecular masses as determined by NaDodSO4/PAGE. These alpha-SR Ca-pump IgGs inhibit ATP-dependent Ca2+ sequestration by purified SR and MA membranes. Indirect immunofluorescence of isolated native MA demonstrated coincident localization of the MA Ca pump, sequestered calcium, and membrane vesicles. Fluorescent foci were regionally concentrated within the volumes of the asters and spindle. Microinjection of the anti-Ca-pump IgGs into one of two sister blastomeres at second metaphase resulted in mitotic arrest of the injected cell accompanied by a rapid loss of spindle birefringence. Karyomeres formed and fused to form nuclei either at the site of the metaphase plate or at the position the chromosomes occupied during anaphase A. The cleavage furrow did not develop in the injected cell, while the sister and neighbor cells continued normal mitotic cycling. Injection later in mitosis yielded cells with two nuclei whose cleavage furrow relaxed completely. Routine control injections of boiled immune IgG, preimmune IgG, Wesson oil, buffer, or goat anti-rabbit IgG did not affect mitosis, birefringence of the MA, or cleavage furrow activity.
- Published
- 1986
- Full Text
- View/download PDF
4. H-K-ATPase activity in PNA-binding intercalated cells of newborn rabbit cortical collecting duct
- Author
-
Constantinescu, A., Silver, R. B., and Satlin, L. M.
- Abstract
Functional and immunocytochemical studies indicate that intercalated cells in the adult rabbit cortical collecting duct (CCD) possess an H-K-adenosinetriphosphatase (H-K-ATPase). Because growing subjects must retain K+ and excrete H+, we sought to determine whether H-K-ATPase is present in the CCD early in life and, if so, to assess its activity and polarity. H-K-ATPase activity was defined as the initial rate of Sch-28080-inhibitable K+-dependent cell pH (pHi) recovery observed, in the absence of Na+, in response to an in vitro acid load. Transporter activity was assayed in intercalated cells labeled with the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and apical cell surface marker rhodamine peanut lectin (PNA) in split-open CCDs isolated from neonatal and adult New Zealand White rabbits. In Na+-free N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-buffered solutions (nominal absence of CO2/HCO3-), the rate of K+-dependent pH(i) recovery from a NH4Cl-induced acid load was similar in newborn (0.056 +/- 0.015 pH U/min, n = 9) and adult (0.060 +/- 0.019 pH U/min; n = 9, P = not significant) cells. This rate of K+-dependent pH(i) recovery was significantly reduced by 10-20 pM Sch-28080, an inhibitor of gastric H-K-ATPase, in both newborns (0.009 +/- 0.003 pH U/min, n = 7) and adults (0.013 +/- 0.007 pH U/min, n = 9) (P < 0.05 compared with rates in absence of inhibitor). To determine whether the location of the transporter is consistent with a role in K+ absorption and H+ secretion, pH(i) recovery of acutely acid-loaded intercalated cells in neonatal CCDs (n = 7) microperfused and bathed in the absence of Na+ and K+ was monitored after selective addition of K+ to either the luminal or basolateral membrane. Addition of 5 mM K+ led to a significantly greater rate of pH(i) recovery when it was added to the luminal rather than the peritubular solution (0.049 +/- 0.005 vs. 0.018 +/- 0.005 pH U/min, P < 0.05). We conclude that PNA-binding intercalated cells of the neonatal CCD possess H-K-ATPase activity, predominantly located in the apical membrane. This provides a mechanism for H secretion and K+ retention, processes required for growth.
- Published
- 1997
- Full Text
- View/download PDF
5. Changes in intracellular calcium during the development of epithelial polarity and junctions.
- Author
-
Nigam, S K, Rodriguez-Boulan, E, and Silver, R B
- Abstract
The "Ca2+ switch" model with cultured Madin-Darby canine kidney (MDCK) cells is useful in studying the biogenesis of epithelial polarity and junction formation and provides insight into early steps in the morphogenesis of polarized epithelial tissues. When extracellular Ca2+ in the medium is changed from less than 5 microM to 1.8 mM, MDCK cells rapidly change from a nonpolarized state exhibiting little cell-cell contact (with the apical membrane and junctional proteins largely within the cell) to a polarized state with well-formed tight junctions and desmosomes. To examine the role of intracellular Ca2+ in the development of polarity and junctions, we made continuous spectrofluorimetric measurements of intracellular Ca2+ during the "switch," using the fluorescent indicator fura-2. Intracellular Ca2+ increased greater than 10-fold during the switch and gave a complex pattern of increase, decrease, and stabilization. In contrast, intracellular pH [monitored with 2',7'-bis(2-carboxyethyl)-5(and 6)-carboxyfluorescein (BCECF)] did not change during the period studied. When intracellular Ca2+ curves in several cells were compared, considerable heterogeneity in the rate of increase of intracellular Ca2+ levels and in peak levels was evident, perhaps reflecting the heterogeneity among cells in establishing junctions and polarity. The heterogeneity of the process was confirmed by digital imaging of intracellular Ca2+ and was present even in a "clonal" line of MDCK cells, indicating the heterogeneity was intrinsic to the process and not simply a function of slight genetic variation within the population of MDCK cells. In pairs of cells that had barely established cell-cell contact, often one cell exhibited a much greater increase in intracellular Ca2+ than the other cell in the pair. At the site of cell-cell contact, an apparent localized change (an increase over the basal level) in intracellular Ca2+ was frequently present and occasionally appeared to extend beyond the point of cell-cell contact. Since the region of cell-cell contact is also the site where junctions form and where vesicles containing apical membranes fuse during the development of polarity, we postulate a role for global and local changes in intracellular Ca2+ in these events.
- Published
- 1992
- Full Text
- View/download PDF
6. 8-BrcAMP-induced capacitance and transport of H2O and Na in skin and urinary bladder of urodele amphibians
- Author
-
Silver, R. B. and Palmer, L. G.
- Abstract
The effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) on capacitance (C), osmotic water flow (Jv), and amiloride-sensitive short-circuit current (INa) were studied in bladder and skin derived from the tiger salamander (aquatic and postmetamorphosed terrestrial phase). 8-BrcAMP-dependent increases in C, measured from the transepithelial voltage response to constant current pulses, occurred in aquatic (delta C = 44%) and terrestrial (delta C = 61%) bladders and terrestrial skin (delta C = 19%). Jv (200-mosM gradient, mucosal side hypotonic) was observed in the bladders and was further enhanced by addition of 8-BrcAMP [10(-3) M; delta Jv = 0.42 microliter.min-1.microF-1 (aquatic) and 0.32 microliter.min-1.microF-1 (terrestrial)]. The aquatic and terrestrial skins were relatively impermeable to water, but the terrestrial skin showed a small response to 8-BrcAMP (delta Jv = 0.04 microliter.min-1.microF-1). 8-BrcAMP-mediated natriferic responses were observed in aquatic bladder (delta INa = 62%) and terrestrial skin (delta INa = 105%). Antidiuretic hormone (ADH)-induced Jv was also observed in the aquatic bladder (delta Jv = 0.33 microliter.min-1.microF-1) and was similar to the 8-BrcAMP-mediated Jv measured in this tissue. The terrestrial bladder displayed a more vigorous response to 8-BrcAMP than to ADH (delta JvADH = 0.09 microliter.min-1.microF-1 and delta Jv8-BrcAMP = 0.32 microliter.min-1.microF-1), suggesting that diminished sensitivity to ADH accompanies the transition from water to land in this species.
- Published
- 1989
- Full Text
- View/download PDF
7. 2,3,7,8-tetrachlorodibenzo-p-dioxin increases cardiac myocyte intracellular calcium and progressively impairs ventricular contractile responses to isoproterenol and to calcium in chick embryo hearts.
- Author
-
Canga, L, Paroli, L, Blanck, T J, Silver, R B, and Rifkind, A B
- Abstract
Binding by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to the Ah receptor leads to transcriptional activation of several genes and a toxicity syndrome that includes tumor promotion, wasting, hormonal and immune system dysfunction, and death. Recent findings indicate that TCDD may also affect cardiac function. Here, we used the chick embryo, a TCDD-sensitive species, to further characterize the effects of TCDD on ventricular muscle contraction and on cardiac myocyte [Ca2+]i assessed with fura 2. The results show that TCDD causes an evolving sequence of contractile defects, independent of changes in diet, first impairing cAMP-modulated contraction (after 48 hr) and later (by seven days) decreasing responses to [Ca2+]o. Phenobarbital, even at high doses, failed to affect the inotropic response to isoproterenol, supporting the specificity of the ventricular contractile effects of TCDD. TCDD treatment also depressed inotropic responses to theophylline and forskolin, indicating that it has a post-beta-adrenergic receptor effect on cAMP action. In contrast to its depression of responses to beta-adrenergic stimuli and to [Ca2+]o, TCDD did not affect initial tensions of ventricular muscle stimulated at 1 Hz or the force-frequency response up to 1 Hz, indicating that TCDD-treated ventricles can respond normally at slow rates of stimulation. TCDD treatment depressed lusitropic (relaxation) responses to isoproterenol and to increasing [Ca2+]o indicating that it impairs the ability of the sarcoplasmic reticulum to sequester Ca2+. Fura 2-based measurements showed that [Ca2+]i was nearly doubled after TCDD treatment. The increase in [Ca2+]i is consistent with the decrease in the contractile response to [Ca2+]o, amelioration of the response to isoproterenol by subphysiologic concentrations of [Ca2+]o, and intermittent lack of response to electrical stimulation in high K+ observed in ventricles from TCDD-treated embryos. TCDD treatment also depressed the initial increase in [Ca2+]i by isoproterenol, consistent with the decreased contractile response to isoproterenol. The findings show that TCDD causes well defined, progressive impairment of avian ventricular responses to inotropic stimuli, providing new evidence that the heart is a target of TCDD action and that TCDD disturbs intracellular calcium processing.
- Published
- 1993
8. Identification of nonmitochondrial creatine kinase enzymatic activity in isolated sea urchin mitotic apparatus.
- Author
-
Silver, R B, Saft, M S, Taylor, A R, and Cole, R D
- Abstract
ATP-dependent calcium sequestration was previously localized in vesicles of mitotic apparatus isolated from sea urchins. We now demonstrate that the mitotic apparatus contains an ATP-regenerative system characterized as creatine kinase (EC 2.7.3.2). Mitotic apparatus isolated with vesicles intact converted ADP to ATP if phosphocreatine was present. Omission of ADP or phosphocreatine gave negligible ATP. When mitotic apparatus were washed with detergent-containing buffer to remove vesicles, their ability to produce ATP from ADP and phosphocreatine was reduced. Assays of creatine kinase activity using NADP+:glucose-6-phosphate dehydrogenase indicated that 70% of the creatine kinase activity was extractable with 0.5% Triton X-100. The insoluble residue containing the skeleton of the mitotic apparatus had the rest of the activity. Experiments with a luciferin/luciferase assay showed that Triton removed above 82% of the activity. Preparations of intact mitotic apparatus were free of cytochrome c oxidase (EC 1.9.3.1) activity and therefore free of mitochondria. About 10(8) mitotic apparatus (total volume about 1 liter) could produce 17 mmol of ATP/min when substrates were not limiting. The creatine kinase enzyme activity described herein and the previously described membrane vesicular calcium sequestration system are nonmitochondrial, integral constituents of the sea urchin mitotic apparatus.
- Published
- 1983
- Full Text
- View/download PDF
9. Imaging Preterminal Calcium Concentration Microdomains in the Squid Gaint Synapse
- Author
-
Llinás, R., Sugimori, M., and Silver, R. B.
- Published
- 1991
- Full Text
- View/download PDF
10. Time resolved calcium microdomains and synaptic transmission
- Author
-
Llinas, R., Sugimori, M., and Silver, R. B.
- Published
- 1995
- Full Text
- View/download PDF
11. The concept of calcium concentration microdomains in synaptic transmission
- Author
-
Llinas, R., Sugimori, M., and Silver, R. B.
- Published
- 1995
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.