• The effects of Tinospora cordifolia as an immunomodulatory agent were evaluated using a combined approach of network pharmacology and in-vivo study. • Animals were immunized with JEEV, an inactivated Japanese encephalitis SA-14-14-2 strain vaccine. • Preconditioning of Tinospora cordifolia exhibited induction of protective immunity in response to the JE vaccine. • The levels of inflammatory cytokines (IL-17 and IFN-gamma) were induced in preconditioned mice immunized with the vaccine. Tinospora cordifolia Miers. (TC) (Giloya/Guduchi) is a native Indian herb, reported for its wide array of medicinal activities including immunomodulatory activity. However, the exact pharmacological mechanism of TC as an immunomodulatory agent remains unclear. Central to this, to the best of our knowledge, no study has explored the immunoadjuvant potential of TC in response to the Japanese encephalitis (JE) vaccines. The study aims to explore the immunoadjuvant potential of TC ethanolic extract in response to the JE vaccine and illustrates its potential mechanism of immunomodulation using an integrated approach of network pharmacology and in-vivo experimental study. Initially, the extract was prepared and the components of TC were identified through high-resolution liquid chromatography mass spectrometry (HR-LC/MS). The compounds were then screened for network pharmacology analysis. Next, the drug and disease targets were identified and the network was constructed using Cytoscape 3.7.2 to obtain different signalling pathways of TC in JEV. We then evaluated the immunoadjuvant potential of TC ethanolic extract in mice immunized with inactivated JE vaccine (SA-14–14–2 strain). BALB/c mice were supplemented with TC extract (30 and 100 mg/kg , i.g.), daily for 56 days, marked with immunization on 28th day of the study, by JE vaccine. Blood was collected for flow cytometry and haematological analysis (total and differential cell counts). The surface expression of immune-cell markers (CD3+, CD4+, CD19+, CD11c+, CD40+) were evaluated on day 0 (pre-immunization), day 14 and 28 post-immunization. Additionally, inflammatory cytokines (IFN-γ+/IL-17A+) were evaluated post-14 and 28 days of immunization. The HR-LC/MS analysis identified the presence of glycosides, terpenoids, steroids and alkaloids in the TC extract. Through network analysis, 09 components and 166 targets were obtained, including pathways that involve toll-like receptor signalling, pattern-recognition receptor signalling, cytokine receptor and cytokine mediated signalling, etc. The in-vivo results showed that preconditioning with TC ethanolic extract significantly elevated the haematological variables (leucocyte count) as well as the surface expression of CD markers (B and T cell subsets) on day 0 (pre-immunization), day 14 and 28 post-immunization. Furthermore, preconditioning of TC demonstrated a dose-dependant augmentation of immune cells (CD3+, CD4+, CD19+, CD11c+) and inflammatory cytokines (IFN-γ+/IL-17A+) on day 14 and 28 post-immunization when compared to vaccine alone group. Results showed that preconditioning with TC extract before immunization might play a potential role in enhancing the cell-mediated as well as humoral immunity. Altogether, the combinatorial approach of network pharmacology and in-vivo animal experimentation demonstrated the immunoadjuvant potential of TC in response to JEV vaccine. [Display omitted] [ABSTRACT FROM AUTHOR]