112 results on '"fission chamber"'
Search Results
2. Optimization of the Charge Comparison Method for Multiradiation Field Using Various Measurement Systems
- Author
-
Clément Lynde, Z. El Bitar, Frederick Carrel, Giacomo Galli, Matthieu Hamel, Vincent Schoepff, Amélie Grabowski, Eva Montbarbon, Camille Frangville, G.H.V. Bertrand, Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Service d’Orthopédie-Traumatologie CH Metropole Savoie, CentraleSupélec, Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), European Organization for Nuclear Research (CERN), Département Recherches Subatomiques (DRS-IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Ionizing radiation ,Nuclear and High Energy Physics ,Photomultiplier ,Computer science ,spectrum analysis ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Scintillator ,plastic scintillator ,01 natural sciences ,beta-rays spectrometry ,electronic architecture ,Particle detector ,030218 nuclear medicine & medical imaging ,010305 fluids & plasmas ,pulse shape discrimination ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Partial discharge ,0103 physical sciences ,Figure of merit ,Particles classification ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Electrical and Electronic Engineering ,signal processing ,scintillation counter ,nuclear instrumentation ,Charge comparison method (CCM) ,[PHYS]Physics [physics] ,fission chamber ,instrumentation ,Signal processing ,Neutron-gamma discrimination ,integration period ,detector ,pulse shape discrimination (PSD) ,Detector ,neutrons ,gamma-rays spectrometry ,scintillator ,Nuclear Energy and Engineering ,Scintillation counter ,[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph] ,silicon photomultiplier ,optimization ,Algorithm ,charge comparison method - Abstract
International audience; This article presents a procedure for optimizing the charge comparison method (CCM) used for pulse shape discrimination (PSD). Without prior knowledge of the signals or the readout system, our procedure automatically optimizes the integration periods maximizing the discrimination ability of the radiation detector. This procedure is innovative in its adaptability and automation without being complicated to implement on a standard computer. Another advantage of this approach is the possibility to use it even if the operation of the readout system and the recording process of the signal is not fully known. Therefore, it enables all detection systems generating signals whose temporal evolution depends on the origin to optimize the integration periods of the CCM. Our procedure is based on verifying that two criteria are met in terms of the number of components and the correlation of Gaussian fits made on the distribution of the tail-to-total integral resulting from the CCM. We tested the procedure for different application cases. First, the optimization of the integration periods of the CCM was performed for the discrimination between fast neutrons and gamma rays with a plastic scintillator and a silicon photomultiplier (SiPM) in the energy range [250 keVee; 4.5 MeVee]. The integration periods, from the laboratory's experience with photomultiplier tubes (PMTs) and plastic scintillators, gave a Figure of Merit (FoM) of 0.58 corresponding to a rejection ratio (RR) of 8.6%. The procedure improved the FoM up to 0.88 corresponding to a RR of 1.9%. We also applied the procedure to the discrimination between beta and gamma rays with a PMT and a phoswich organic detector and to the discrimination between signals collected from neutrons or partial discharges within a fission chamber.
- Published
- 2020
- Full Text
- View/download PDF
3. A Method for the Evaluation of the Charge Collection Time and the Mean Charge in the Pulses of Ionization Fission Chamber
- Author
-
S. Yu. Obudovskii, V. A. Vorob’ev, and Yu. A. Kashchuck
- Subjects
Materials science ,Fission ,Fission chamber ,Applied Mathematics ,Collection Time ,Ionization ,Electrode ,Detector ,Charge (physics) ,Atomic physics ,Instrumentation ,Pulse (physics) - Abstract
We present a method for the evaluation of the charge collection time in an ionization fission chamber with flat electrodes. The mean charge and the time of its collection are determined according to the parameters of electric signals recorded at the output of the measuring system. We use a model of formation of current pulse in the detector and a mathematical model of measuring circuit. The procedure of finding the charge collection time and the mean charge per pulse is approved in experiments with KNT-34-type ionization fission chambers. Various possibilities of practical application of the proposed procedure are considered.
- Published
- 2019
- Full Text
- View/download PDF
4. New developments of a fission chamber for very high radioactivity samples
- Author
-
J. Taieb, B. Laurent, Paola Marini, G. Belier, P. Morfouace, Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Fission chamber ,Fission ,Nuclear engineering ,Detector ,Time resolution ,Actinide ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,7. Clean energy ,Neutron research facility ,0103 physical sciences ,Neutron ,010306 general physics ,Instrumentation ,ComputingMilieux_MISCELLANEOUS - Abstract
A new fission chamber was developed and built for prompt-fission-neutron spectra (PFNS) measurements in neutron-induced fission of actinides, and is described in Taieb et al. (2016). It allowed us to minimize incident- and outgoing-neutron scattering, and optimize both time resolution and alpha to fission fragment discrimination. The fission chamber was validated and used for 238U and 252Cf PFNS measurements. In order to measure PFNS of samples with a natural alpha activity of the order of 10 MBq, further improvements to the detector were done and are presented in this work. Tests of the improved fission chamber lead to a fission fragment detection efficiency of 91% for a 14.41 MBq 240Pu deposit, and 99% for a 247 kBq 242Pu deposit. The fission chamber was successfully used for 239Pu PFNS measurements at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center (WNR@LANSCE).
- Published
- 2021
- Full Text
- View/download PDF
5. Reactor Pulse Operation for Nuclear Instrumentation Detector Testing – Preparation of a Dedicated Experimental Campaign at the JSI TRIGA Reactor
- Author
-
Grégoire De Izarra, Vladimir Radulović, Igor Lengar, Loïc Barbot, and Julijan Peric
- Subjects
fission chamber ,Materials science ,business.industry ,Nuclear engineering ,Physics ,QC1-999 ,Fusion power ,Nuclear power ,TRIGA ,cherenkov light ,reactor pulse ,Silicon photomultiplier ,Neutron flux ,activation dosimetry ,Neutron ,Research reactor ,business ,silicon photomultiplier ,Cherenkov radiation - Abstract
The availability of neutron fields with a high neutron flux, suitable for irradiation testing of nuclear instrumentation detectors relevant for applications in nuclear facilities such as material testing reactors (MTRs), nuclear power reactors and future fusion reactors is becoming increasingly limited. Over the last several years there has been increased interest in the experimental capabilities of the 250 kW Jožef Stefan Institute (JSI) TRIGA research reactor for such applications, however, the maximal achievable neutron flux in steady-state operation mode falls short of MTR-relevant conditions. The JSI TRIGA reactor can also operate in pulse mode, with a maximal achievable peak power of approximately 1 GW, for a duration of a few ms. A collaboration project between the JSI and the French Atomic and Alternative Energy Commission (CEA) was initiated to investigate absolute neutron flux measurements at very high neutron flux levels in reactor pulse operation. Such measurements will be made possible by special CEA-developed miniature fission chambers and modern data acquisition systems, supported by the JSI TRIGA instrumentation and activation dosimetry. Additionally, measurements of the intensity of Cherenkov light are proposed and being investigated as an alternative experimental method. This paper presents the preparatory activities for an exhaustive experimental campaign, which were carried out in 2019-2020, consisting of test measurements with not fully appropriate fission chambers, activation dosimetry and silicon photomultipliers (SiPMs) The presented results provide useful and promising experimental indications relevant for the design of the experimental campaign.
- Published
- 2021
6. Characterization of gamma field in the JSI TRIGA reactor
- Author
-
Ambrožič, Klemen and Snoj, Luka
- Subjects
Fission ,Monte Carlo transport delcev ,Aktivacija ,TLD ,Activation ,TRIGA ,Delayed radiation ,Semiconductor dosimetry ,Dose equivalent ,Dozimetrija s polprevodniki ,MCNP ,Monte Carlo particle transport ,Ionizacijska celica ,Fusion ,Kerma ,Dozni ekvivalent ,Zakasnelo sevanje ,Doza ,Fisijska celica ,Fuzija ,R2S ,Fisija ,Dose ,Fission chamber ,Ionization chamber ,D1S - Abstract
The work presented in this thesis deals with the characterization of gamma field inside a nuclear reactor by experiments and computational modelling. In the first part of the thesis an outline of the nuclear with neutrons and neutron transport. A description of high energy photon and electron reactions and importance of their coupling for accurate calculations of energy deposition. Particle transport equations are presented with emphasis on deriving adjoint operators used for variance reduction of Monte Carlo particle transport codes. Characterization of gamma radiation field using Monte Carlo transport codes only takes into account prompt gamma generation from fission, inelastic scattering and prompt (n,gamma) reactions. Previous evaluations suggest a roughly 30 % underestimation compared to measurements. A JSIR2S code package for delayed radiation field calculations has been developed and validated by numerous experiments. Characterization of neutron and prompt gamma radiation field inside the JSI TRIGA reactor core irradiation facilities was performed using the kerma approximation. The computational model was later expanded and the criticality source term translated to a fixed source for calculations of variance reduction parameters. The methodology has been validated by experiments, showing good agreement for neutrons, while underestimating the gamma field due to neglecting delayed radiation field. Several experimental campaigns were performed at JSI TRIGA reactor using fission and ionization chamber and Thermoluminescent dosimeters. An experimental procedure for estimation of the delayed gamma fraction was developed. Validation of the JSIR2S was performed on the above mentioned measurements, showing agreement within the uncertainty. use case on using the JSIR2S for calibration of semiconductor detectors in the JSI TRIGA reactor after reactor shut-down is described. The JSIR2S code package is also applied to shut-down dose rate calculations in fusion problems showing good agreement with experiments and similar two-step and single-step methodology codes for delayed radiation field characterization. Doktorsko delo obravnava eksperimentalno in računsko karakterizacijo polja žarkov gama v jedrskih reaktorjih. V prvem delu predstavimo jedrske reakcije z nevtroni, njihov transport in transport nastalih visoko energijskih fotonov in elektronov ter izpostavili pomembnost njihovega prelivanja za izračune deponirane energije. Predstavimo tudi splošno transportno enačbo s poudarkom na adjungiranih operatorjih, ki se uporabljajo za redukcijo variance v preračunih transporta delcev z metodo Monte Carlo. Pri uporabi metode za Monte Carlo transprot delcev se navadno upoštevajo samo promptne reakcije produkcije žarkov gama kot so fisija, neelastično sipanje in promptne reakcije (n,gamma). Meritve kažejo na 30 % podcenitev izračunov, kar pripisujemo zakasnelemu sevanju. Razvili smo programski paket JSIR2S za izračune polja zakasnelega sevanja. Paket smo validirali na vrsti eksperimentov na reaktorju IJS TRIGA ter na nekaterih fuzijskih eksperimentih za izračun hitrosti doze po zaustavitvi. Začetno karakterizacija polja nevtronov in promptnih žarkov gama v obsevalnih mestih sredice reaktorja IJS TRIGA smo izvedli v približku kerme. Razširjen računski model smo uporabili za izračune sevalnega polja zunaj biološkega ščita reaktorja. Nevtronski izvor smo iz preračunov kritičnosti prevedli na fiksni izvor, ki smo ga uporabili za določanje parametrov redukcije variance. Za polje nevtronov dobimo ujemanje znotraj negotovosti, polje žarkov gama pa podcenimo ker ne upoštevamo polja zakasnelega sevanja. Na reaktorju IJS TRIGA smo izvedli več eksperimentov z meritvami s fisijskimi in ionizacijskimi celicami ter termoluminescentnimi dozimetri. Razvili smo proceduro za eksperimentalno določanje prispevka polja zakasnelih žarkov gama. Pridobljene rezultate smo uporabili za validacijo JSIR2S, kjer dobimo ujemanje znotraj negotovosti. JSIR2S smo uporabili tudi za kalibracijo polprevodniških dozimetrov v polju žarkov gama po zaustavitvi reaktorja IJS TRIGA. JSIR2S smo aplicirali tudi na fuzijske probleme za izračune hitrosti doze po zaustavitvi reaktorja, ki kažejo na dobro ujemanje z eksperimenti oziroma z preračuni s podobnimi programskimi orodji z uporabo eno ali dvo-koračne metode.
- Published
- 2020
7. The method for determining the charge collection time and the mean charge in the pulse of the ionization fission chamber
- Author
-
V. A. Vorob’ev, Yu. A. Kashchuk, and S. Yu. Obudovskii
- Subjects
Materials science ,Fission chamber ,Ionization ,Collection Time ,Charge (physics) ,General Medicine ,Atomic physics ,Pulse (physics) - Published
- 2019
- Full Text
- View/download PDF
8. Blind nonnegative matrix factorization algorithms to estimate the neutron flux of fission chamber detector: Application to neutron-gamma discrimination
- Author
-
Rajaa Cherkaoui El Moursli, H. Arahmane, and El-Mehdi Hamzaoui
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Fission chamber ,Detector ,01 natural sciences ,Non-negative matrix factorization ,Nuclear physics ,030507 speech-language pathology & audiology ,03 medical and health sciences ,Nuclear Energy and Engineering ,Neutron flux ,0103 physical sciences ,Neutron ,0305 other medical science - Published
- 2018
- Full Text
- View/download PDF
9. Calibration of digital wide-range neutron power measurement channel for open-pool type research reactor
- Author
-
Jong Bok Lee, Sungmoon Joo, and Sang Mun Seo
- Subjects
Nuclear engineering ,Instrumentation ,Astrophysics::High Energy Astrophysical Phenomena ,Signal ,lcsh:TK9001-9401 ,Power (physics) ,Nuclear Instrumentation System ,Nuclear Energy and Engineering ,Neutron flux ,Research Reactor ,Digital Wide-Range Neutron Power Measurement ,Calibration ,Power Calibration ,Environmental science ,Neutron detection ,lcsh:Nuclear engineering. Atomic power ,Research reactor ,Neutron ,Commissioning ,Fission Chamber - Abstract
As the modernization of the nuclear instrumentation system progresses, research reactors have adopted digital wide-range neutron power measurement (DWRNPM) systems. These systems typically monitor the neutron flux across a range of over 10 decades. Because neutron detectors only measure the local neutron flux at their position, the local neutron flux must be converted to total reactor power through calibration, which involves mapping the local neutron flux level to a reference reactor power. Conventionally, the neutron power range is divided into smaller subranges because the neutron detector signal characteristics and the reference reactor power estimation methods are different for each subrange. Therefore, many factors should be considered when preparing the calibration procedure for DWRNPM channels. The main purpose of this work is to serve as a reference for performing the calibration of DWRNPM systems in research reactors. This work provides a comprehensive overview of the calibration of DWRNPM channels by describing the configuration of the DWRNPM system and by summarizing the theories of operation and the reference power estimation methods with their associated calibration procedure. The calibration procedure was actually performed during the commissioning of an open-pool type research reactor, and the results and experience are documented herein.
- Published
- 2018
10. A new measurement of the 6Li(n,α)t cross section at MeV energies using a 252Cf fission chamber and 6Li scintillators
- Author
-
J.A. Gomez, L. Kirsch, Shea Mosby, and Matthew Devlin
- Subjects
Physics ,Nuclear and High Energy Physics ,Neutron transport ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Fission chamber ,Nuclear Theory ,Scintillator ,01 natural sciences ,Nuclear physics ,Cross section (physics) ,Time of flight ,Recoil ,0103 physical sciences ,Neutron ,Nuclear Experiment ,010306 general physics ,Instrumentation ,Spontaneous fission - Abstract
A new measurement is presented of the 6 Li(n, α )t cross section from 245 keV to 10 MeV using a 252Cf fission chamber with 6 LiI(Eu) and Cs 2 LiYCl 6 :Ce (CLYC) scintillators which act as both target and detector. Neutron energies are determined from the time of flight (TOF) method using the signals from spontaneous fission and reaction product recoil. Simulations of neutron downscatter in the crystals and fission chamber bring 6 Li(n, α )t cross section values measured with the 6 LiI(Eu) into agreement with previous experiments and evaluations, except for two resonances at 4.2 and 6.5 MeV introduced by ENDF/B-VII.1. Suspected neutron transport modeling issues cause the cross section values obtained with CLYC to be discrepant above 2 MeV.
- Published
- 2017
- Full Text
- View/download PDF
11. Assessment of the Implementation of a Neutron Measurement System During the Commissioning of the Jordan Research and Training Reactor
- Author
-
Sanghoon Bae, Hanju Cha, and Sangmun Suh
- Subjects
Engineering ,BF3 counter ,Discriminator ,Nuclear engineering ,Neutron Measurement System ,02 engineering and technology ,010403 inorganic & nuclear chemistry ,01 natural sciences ,Background noise ,Range (aeronautics) ,Forensic engineering ,Neutron ,Research reactor ,Discriminator Threshold ,Fission Chamber ,Interlock ,business.industry ,Background Noise ,021001 nanoscience & nanotechnology ,lcsh:TK9001-9401 ,0104 chemical sciences ,Power (physics) ,Jordan Research and Training Reactor ,Nuclear Energy and Engineering ,lcsh:Nuclear engineering. Atomic power ,Neutron source ,0210 nano-technology ,business - Abstract
The Jordan Research and Training Reactor (JRTR) is the first research reactor in Jordan, the commissioning of which is ongoing. The reactor is a 5-MWth, open-pool type, light-water-moderated, and cooled reactor with a heavy water reflector system. The neutron measurement system (NMS) applied to the JRTR employs a wide-range fission chamber that can cover from source range to power range. A high-sensitivity boron trifluoride counter was added to obtain more accurate measurements of the neutron signals and to calibrate the log power signals; the NMS has a major role in the entire commissioning stage. However, few case studies exist concerning the application of the NMS to a research reactor. This study introduces the features of the NMS and the boron trifluoride counter in the JRTR and shares valuable experiences from lessons learned from the system installation to its early commissioning. In particular, the background noise relative to the signal-to-noise ratio and the NMS signal interlock are elaborated. The results of the count rates with the neutron source and the effects of the discriminator threshold are summarized.
- Published
- 2017
- Full Text
- View/download PDF
12. Inverse Problem Approach for the underwater localization of Fukushima Daiichi fuel debris with fission chambers
- Author
-
Q. Lecomte, R. Pissarello, Karim Boudergui, C. Thiam, R. Woo, M. Trocmé, Frederic Laine, H. Hamrita, Adrien Sari, R. Delalez, Camille Frangville, Jonathan Dumazert, Romain Coulon, Frederick Carrel, B. Krausz, M. Bakkali, Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire National Henri Becquerel (LNHB), ONET Technologies, The authors thank Mitsubishi Research Institute, Inc. , for funding this research., Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Nuclear and High Energy Physics ,nuclear power plant ,Fission ,Monte Carlo method ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,010403 inorganic & nuclear chemistry ,7. Clean energy ,01 natural sciences ,030218 nuclear medicine & medical imaging ,modelling ,03 medical and health sciences ,U235 ,0302 clinical medicine ,neutron ,sensor ,Calibration ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Underwater ,signal processing ,Monte Carlo ,nuclear instrumentation ,Physics ,Neutron localization ,instrumentation ,irradiation ,detector ,Fuel debris ,Detector ,Mechanics ,gamma-rays ,Inverse problem ,simulation ,calibration ,0104 chemical sciences ,Maximum-Likelihood Expectation Maximization (ML-EM) ,metrology ,radioactivity ,Fission chamber ,Neutron source ,ionizing radiation - Abstract
International audience; Fuel debris have a distinct neutron signature that can be detected to locate the said debris in a damaged nuclear power plant. Neutron measurement in a damaged PCV environment is however submitted to severe deployments constraints, including a high-dose-rate gamma background and limited available space. The study was therefore oriented towards small fission chambers (FC), with U-235-enriched active substrates. To investigate the expected performance of the FC in various irradiation conditions, a numerical model of the detector head was built. We describe the elaboration and experimental calibration of the numerical model and the Monte Carlo study of the fission rate inside U-235 coatings per generated neutron. The evaluation of a representative calibration coefficient then allowed us to carry out a multi-parameter performance study of a FC underwater, aiming at computing an explicit response function linking, on the one hand, the activity and spatial distribution of neutron emitters in a water container, with, one the other hand, the expected count rates measured by a fission chamber as a function of its radial and axial position inside the water volume. The FC underwater behavior was subsequently corroborated by a measurement campaign on a FC response, set at different positions inside a water drum, as a function of its axial and radial distance to a Cf-252 neutron source attached near the center of the container. We finally present an approach in which fuel debris localization is defined as an Inverse Problem, solvable with a Maximum-Likelihood Expectation Maximization (ML-EM) iterative algorithm. The projector matrix is built by capitalization on the results of the previously consolidated numerical studies. The ML-EM was tested on simulated data sets with a varying number of active voxels. Our first results indicate that, for a thermal neutron flux in the order of 10 n.cm−2.s−1 at the detector, originating voxels are identified with a spatial resolution in the radial plane in the order of 10 to 100 cm2.
- Published
- 2020
- Full Text
- View/download PDF
13. Investigation of fission chamber response in the frame of fuel debris localization measurements at Fukushima Daiichi
- Author
-
R. Pissarello, C. Thiam, H. Hamrita, B. Krausz, F. Carrel, Camille Frangville, F. Laine, Jonathan Dumazert, K. Boudergui, R. Delalez, A. Sari, M. Trocmé, Romain Coulon, Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire National Henri Becquerel (LNHB), ONET Technologies, This work was supported by Mitsubishi Research Institute, Inc., Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Fission chamber ,020209 energy ,Nuclear engineering ,Gamma irradiation trials ,Fuel debris localization ,02 engineering and technology ,Neutron flux measurement ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,law.invention ,modelling ,U235 ,neutron ,law ,LINAC ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,MCNP ,Neutron ,Irradiation ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,signal processing ,damaged nuclear reactor ,nuclear instrumentation ,instrumentation ,Radiation ,primary containment vessel ,irradiation ,dosimetry ,010308 nuclear & particles physics ,dismantling ,dose ,Particle accelerator ,MCNP6 simulation ,Nuclear reactor ,simulation ,Debris ,Neutron temperature ,Fukushima daiichi ,13. Climate action ,radioactivity ,Environmental science ,nuclear reactor ,ionizing radiation ,Fukushima Daiichi - Abstract
International audience; This work aims at assessing the performance of a 235U enriched fission chamber in order to localize fuel debris, prior to dismantling operations, in a flooded primary containment vessel of a damaged nuclear reactor such as Fukushima Daiichi. Based on both a comprehensive scan of the environment and the detection of neutrons emitted by the melted core, fuel debris can be localized. In this paper, we carry out a simulation study using the MCNP6 code to investigate fission chamber response in the frame of fuel debris localization measurements in a damaged nuclear reactor. The CFUF34 fission chamber (manufactured by PHOTONIS) and the primary containment vessel of Fukushima Daiichi Unit 1 were chosen to conduct this work. Impact of different parameters were investigated with MCNP6, such as: neutron energy, water temperature, fission chamber position (altitude, lateral shift, and rotation), and sensitivity loss due to sediments potentially covering fuel debris. In summary, we show that fuel debris should be sought by their thermal neutron signature at a distance of a few centimeters and that potential rotational movements of the fission chamber up to 60° have a limited impact on signals measured. We also show that sensitivity loss due to sediments potentially covering fuel debris has been evaluated on the order of a factor 10 considering a 30 cm-thick sediment layer. On the other hand, experiments were performed to assess the impact of a strong gamma dose rate on fission chamber measurements. These irradiation trials involved a CFUE32 fission chamber (also manufactured by PHOTONIS) available in our laboratory and three different irradiation means: an X-ray tube, an 192Ir source, and a linear electron accelerator. These experiments enable to draw the conclusion that the fission chamber is not impacted by the gamma dose rate up to 104 Gy h−1, which is in good agreement with specifications provided by the manufacturer (PHOTONIS). In addition, no performance degradation was observed after an integrated gamma dose of 2200 Gy on the fission chamber in a 10 min irradiation. However, when the fission chamber is irradiated by gamma dose rates above 104 Gy h−1 (upper limit of the operating domain specified by PHOTONIS), a significant gamma background is observed. Nevertheless, as the gamma dose rates at Fukushima Daiichi should not exceed 103 Gy h−1, fission chamber measurements performed towards fuel debris localization in the primary containment vessels of the units would not be affected by the severe gamma-ray irradiation.
- Published
- 2020
- Full Text
- View/download PDF
14. Fission Product Yield Measurements from Neutron-Induced Fission of 235,238 U and 239Pu
- Author
-
Anton Tonchev, Jack Silano, Sean Finch, F. Krishichayan, M. A. Stoyer, C. R. Howell, J. B. Wilhelmy, Matthew Gooden, and Werner Tornow
- Subjects
Physics ,Fission products ,Nuclear fission product ,010308 nuclear & particles physics ,Fission chamber ,Fission ,QC1-999 ,Nuclear Theory ,Fission product yield ,010403 inorganic & nuclear chemistry ,Transfer system ,01 natural sciences ,0104 chemical sciences ,Nuclear physics ,0103 physical sciences ,Neutron ,Irradiation ,Nuclear Experiment - Abstract
Fission product yields (FPY) are one of the most fundamental quantities that can be measured for a fissioning nucleus and are important for basic and applied nuclear physics. Recent measurements using mono-energetic and pulsed neutron beams generated using Triangle Universities Nuclear Laboratory’s tandem accelerator and employing a dual fission chamber setup have produced self-consistent, high-precision data critical for testing fission models for the neutron-induced fission of 235,238U and 239Pu between neutron energies of 0.5 to 15.0 MeV. These data have elucidated a low-energy dependence of FPY for several fission products using irradiations of varying lengths and neutron energies. This paper will discuss new measurements just beginning utilizing a RApid Belt-driven Irradiated Target Transfer System (RABITTS) to measure shorterlived fission products and the time dependence of fission yields, expanding the measurements from cumulative towards independent fission yields. The uniqueness of these FPY data and the impact on the development of fission theory will be discussed.
- Published
- 2020
15. Simulations of a parallel plate Fission Chamber using the MCNPX simulation code
- Author
-
M. Aiche, L. Mathieu, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Mathieu, Ludovic
- Subjects
Physics ,[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,MCNPX simulations ,010308 nuclear & particles physics ,Fission ,Fission chamber ,[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear engineering ,Process (computing) ,Parallel plate fission chamber ,Alpha-FF discrimination ,01 natural sciences ,Parallel plate ,ComputingMethodologies_PATTERNRECOGNITION ,0103 physical sciences ,Code (cryptography) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Nuclear Experiment ,Instrumentation - Abstract
International audience; MCNPX in its latest version is able to simulate the transportation of Fission Fragments. It opens the door to Fission Chamber simulations. Such simulations are not straightforward and comparisons with experimental spectra often failed. A procedure is described in the present paper to perform such simulation and to process the result to obtain realistic spectra. Simulated spectra are compared with experimental ones in various conditions to validate the method and to present its limitations.
- Published
- 2020
- Full Text
- View/download PDF
16. MONACO v2: Multipurpose and Integrated Data Acquisition System for On-line Neutron and Gamma Measurements
- Author
-
J. F. Villard, Y. Moline, G. de Izarra, H. Hamrita, Christophe Destouches, Loïc Barbot, Damien Fourmentel, CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, This development was performed with funding from the Nuclear Instrumentation Project of the CEA Nuclear EnergyDivision through a collaboration of two CEA labs: the Instrumentation, Sensors and Dosimetry Lab (LDCI) and theSensors and Electronics Lab (LCAE).The work performed at the JSI TRIGA reactor was in preparation of the 2019-2021 bilateral collaboration between CEA and Ministry of higher education, science and technology of Slovenia., CEA, Laboratoire d'Intégration des Systèmes et des Technologies (LIST), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
- Subjects
Ionizing radiation ,Neutron acquisition system ,Nuclear engineering ,Instrumentation ,QC1-999 ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,TRIGA ,Index Terms-Neutron instrumentation ,Gaseous detectors ,Data acquisition ,sensor ,0103 physical sciences ,Research reactor ,Neutron ,Self- powered neutron detectors ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Oscilloscope ,010306 general physics ,FPGA ,nuclear instrumentation ,Physics ,Ion chamber ,instrumentation ,selfpowered neutron detectors ,Neutron-gamma discrimination ,Electronic architecture ,010308 nuclear & particles physics ,neutron instrumentation ,SPND ,Detector ,Ionization chamber ,Fission chamber - Abstract
The CEA MONACO v2 a multichannel acquisition system dedicated to neutron and gamma measurements. It is unique as it integrates all the following features in one module: automatic generation of saturation curves, automatic generation of pulse discrimination curves, detector pulse characterization using the embedded oscilloscope module, pulse mode acquisitions in count rate or pulse height analysis, fluctuation mode and current mode acquisitions. Sensors are plugged to a single connector and the implemented operating modes run constantly in parallel. Firsly designed for on line local neutron and gamma measurements with gaseous detectors in reactor experiments, the MONACO v2 system will also be available for self-powered detectors thanks to its wide current mode working range. After two years of development, CEA teams tested two MONACO v2 prototypes in the Slovenian TRIGA Mark II research reactor in 2018, using CEA miniature ion chambers and SPNDs. The system is now ready for industrialization to be available on the nuclear instrumentation market.
- Published
- 2019
- Full Text
- View/download PDF
17. Experimental information on mass- and TKE-dependence of the prompt fission γ-ray multiplicity
- Author
-
V. Piau, O. Litaize, Marzio Vidali, Marius Peck, M. Travar, Andreas Oberstedt, Alf Göök, Joachim Enders, Stephan Oberstedt, J. Nikolov, W. Geerts, CEA Cadarache, and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
Nuclear and High Energy Physics ,ν‾(A) ,[formula omitted] ,Total kinetic energy (TKE) ,Fission ,Fission chamber ,QC1-999 ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Prompt fission γ rays ,Kinetic energy ,01 natural sciences ,Mass-dependent γ -ray emission ,Nuclear physics ,0103 physical sciences ,Mγ(A) ,Multiplicity (chemistry) , ,ν<%2Fmi><%2Fmrow> ‾<%2Fmo><%2Fmover><%2Fmath>+%28A%29%22"> (A) Nuclear Experiment ,010306 general physics ,Spontaneous fission ,Physics ,Mass number ,010308 nuclear & particles physics ,Mass-dependent γ-ray emission ,[formula omitted](A) ,γ multiplicity ,High Energy Physics::Experiment ,M<%2Fmi><%2Fmrow> γ<%2Fmi><%2Fmrow><%2Fmsub> %28<%2Fmo> A<%2Fmi> %29<%2Fmo><%2Fmath>%22"> - Abstract
Prompt γ rays from the spontaneous fission of 252Cf were measured with cerium-doped LaBr3 detectors. The average prompt fission γ-ray multiplicity, M γ , was determined as a function of fragment mass number (A) and total kinetic energy (TKE). High-statistics data, obtained from three detectors of different size at different angles relative to the fission chamber, confirms unequivocally a saw-tooth like shape of the γ multiplicity as a function of fragment mass, in contrast to previously published data. In addition, the TKE-dependence of M γ was determined experimentally and compared with recent data.
- Published
- 2021
- Full Text
- View/download PDF
18. Stochastic Theory of the Fission Chamber Current Generated by Non-Poissonian Neutrons
- Author
-
Lénárd Pál and Imre Pázsit
- Subjects
Physics ,Fission chamber ,020209 energy ,Detector ,Poisson process ,02 engineering and technology ,Computational physics ,Nuclear physics ,symbols.namesake ,Nuclear Energy and Engineering ,Prompt neutron ,0202 electrical engineering, electronic engineering, information engineering ,symbols ,Neutron ,Probabilistic analysis of algorithms ,Stochastic theory ,Delayed neutron - Abstract
The Campbell theorem, relating the variance of the current of a fission chamber (a "filtered Poisson process") to the intensity of the detection events and to the detector pulse shape, becomes invalid when the neutrons generating the fission chamber current are not independent. Recently, a formalism was developed by the present authors, by which the variance of the detector current can be calculated for detecting neutrons in a subcritical multiplying system, where the detection events are obviously not independent. In the present paper, the previous formalism, which only accounted for prompt neutrons, is generalized to account also for delayed neutrons. A rigorous probabilistic analysis of the detector current was performed by using the same simple, but realistic detector model as in the previous work. The results of the present analysis made it possible to determine the bias of the traditional Campbelling techniques both qualitatively and quantitatively. The results show that the variance still remains proportional to the detection intensity, and is thus suitable for the monitoring of the mean flux, but the calibration factor between the variance and the detection intensity is an involved function of the detector pulse shape and the subcritical reactivity of the system, which diverges for critical systems.
- Published
- 2016
- Full Text
- View/download PDF
19. Performance of Higher Order Campbell methods, Part I: review and numerical convergence study
- Author
-
M. Bakkali, Imre Pázsit, C. Jammes, Zsolt Elter, Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg, Sweden, Laboratoire de Dosimétrie, de Contrôle-commande et Instrumentation (LDCI), Service Physique EXpérimentale, d'essais en Sûreté et d'Instrumentation (SPESI), Département Etude des Réacteurs (DER), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Département Etude des Réacteurs (DER), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Swedish Research Council (Grant no. B0774801), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
- Subjects
Nuclear and High Energy Physics ,Correctness ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,020209 energy ,Neutron flux monitoring ,02 engineering and technology ,01 natural sciences ,Filtered Poisson process ,Campbelling mode ,NEUTRON-FLUX MEASUREMENTS ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Neutron flux ,0103 physical sciences ,Convergence (routing) ,0202 electrical engineering, electronic engineering, information engineering ,Range (statistics) ,Applied mathematics ,Instrumentation ,Physics ,Signal processing ,010308 nuclear & particles physics ,Noise (signal processing) ,Linearity ,PULSE ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,FISSION CHAMBERS ,SIMULATION ,SIGNAL MOMENTS ,Fission chamber ,REACTORS ,Transient (oscillation) ,High order ,SYSTEM - Abstract
International audience; This paper investigates, through numerical simulations, the performance of a signal analysis method by which a high temperature fission chamber can be used over a wide range of count rates. Results reported in a previous paper (Elter et al., 2015 [I]) indicated that the traditional Campbell method and the pulse mode cannot provide a sufficient overlap at medium count rates. Hence the use of the so-called Higher Order Campbell (HOC) methods is proposed and their performance is investigated. It is shown that the HOC methods can guarantee the linearity (i.e. correctness) of the neutron flux estimation over a wide count rate, even during transient conditions. The capabilities of these methods for suppressing parasitic noise (originating from various sources) are verified.
- Published
- 2016
- Full Text
- View/download PDF
20. Development of a Wide Dynamic Range Neutron Flux Measurement Instrument Having Fast Time Response for Fusion Experiments
- Author
-
Kunihiro Ogawa, Shigehiro Kono, Mitsutaka Isobe, T. Kobuchi, Takeo Nishitani, Daijiro Ito, Michinori Yamauchi, Tsuyoshi Misawa, Tsuyoshi Kumagai, Makoto Tomitaka, Hitoshi Miyake, Hiroshi Hayashi, and Hiroyuki Yazawa
- Subjects
fission chamber ,Fusion ,Materials science ,Nuclear engineering ,fast time response ,wide dynamic range ,Large Helical Device ,Condensed Matter Physics ,Campbell method ,Time response ,Neutron flux ,Wide dynamic range ,neutron flux measurement ,Kyoto University Critical Assembly - Abstract
A wide-range neutron flux measurement instrument is developed herein for monitoring the total neutron emission rate and yield of the Large Helical Device (LHD) during deuterium experiments implemented from March 2017 in the National Institute for Fusion Science (NIFS), Japan. The instrument is designed for and installed on the Neutron Flux Monitoring (NFM) system, which measures the counting rate using a 235U Fission Chamber. By combining the pulse counting and Campbell methods, the Digital Signal Processing Unit (DSPU) realized a wide dynamic range of over six orders of magnitude from 1 × 103 counts/s (cps) to 5 × 109 cps. This study explains and discusses how the instrument is developed, including topics from the predevelopment activities to the verification test at the Kyoto University Critical Assembly (KUCA). Experimental results in the LHD using the finished products suggest that the NFM system works well during deuterium experiments.
- Published
- 2021
- Full Text
- View/download PDF
21. CEA-JSI Experimental Benchmark for validation of the modeling of neutron and gamma-ray detection instrumentation used in the JSI TRIGA reactor
- Author
-
Gašper Žerovnik, Damien Fourmentel, Andrej Trkov, Žiga Štancar, Clément Fausser, Vladimir Radulović, Anže Pungerčič, Nicolas Thiollay, A. Gruel, G. Gregoire, Christophe Destouches, Luka Snoj, Tanja Goričanec, Christophe Domergue, Grégoire De Izarra, Igor Lengar, Loïc Barbot, Klemen Ambrožič, and Benoit Geslot
- Subjects
fission chamber ,monte carlo ,mcnp ,Computer science ,Astrophysics::High Energy Astrophysical Phenomena ,Physics ,QC1-999 ,Nuclear engineering ,Monte Carlo method ,jeff ,TRIGA ,tripoli-4 ,benchmark ,Nuclear reactor core ,Nuclear fission ,irdf ,Benchmark (computing) ,Nuclear fusion ,Neutron ,triga ,Instrumentation (computer programming) ,fission rate - Abstract
Constant improvements of the computational power and methods as well as demands of accurate and reliable measurements for reactor operation and safety require a continuous upgrade of the instrumentation. In particular, nuclear sensors used in nuclear fission reactors (research or power reactors) or in nuclear fusion facilities are operated under intense mixed neutron and gamma-ray fields, and need to be calibrated and modeled to provide selective and accurate neutron and gamma-ray measurements. The French Atomic Energy and Alternative Energies Commission (CEA) and the Jožef Stefan Institute (JSI) have started an experimental program dedicated to a detailed experimental benchmark with analysis using Monte Carlo particle transport calculations and a series of neutron and gamma-ray sensor types used in the JSI TRIGA Mark II reactor. CEA has setup a simplified TRIPOLI-4® modeling scheme of the JSI TRIGA reactor based on the information available in the IRPhEP benchmark in order to facilitate analysis of future neutron and gamma-ray measurements. These allow the CEA to perform a TRIPOLI-4 instrumentation calculation scheme benchmarked with the JSI MCNP model. This paper presents the main results of this CEA calculation scheme application and the analysis of their comparison to the JSI results obtained in 2012 with the MCNP5 & ENDF/B-VII.0 calculation scheme. This paper will conclude with some information about the new experimental program to be carried out in 2022 in the TRIGA reactor core.
- Published
- 2021
- Full Text
- View/download PDF
22. BEAVRS: An integral full core multi-physics PWR benchmark with measurements and uncertainties
- Author
-
Kord Smith, Shikhar Kumar, Benoit Forget, and Jingang Liang
- Subjects
Fission chamber ,020209 energy ,Process (computing) ,Energy Engineering and Power Technology ,02 engineering and technology ,010501 environmental sciences ,01 natural sciences ,Core (game theory) ,Open source ,Nuclear Energy and Engineering ,Nuclear fission ,0202 electrical engineering, electronic engineering, information engineering ,Benchmark (computing) ,Uncertainty quantification ,Safety, Risk, Reliability and Quality ,Waste Management and Disposal ,Algorithm ,Simulation methods ,0105 earth and related environmental sciences - Abstract
The BEAVRS benchmark was proposed in 2013 to serve as a non-proprietary benchmark based on measured reactor data to validate high-fidelity reactor simulation methods. In its third version release, the benchmark now includes an open source repository to provide users all source files related to BEAVRS. This version will also contain complete documentation of the uncertainty quantification work conducted. As part of this process, this paper elaborates on a systematic approach to quantifying the uncertainty that arises from using radial tilt-corrected data to compare BEAVRS data to simulated data. These uncertainty metrics are combined with model fitting uncertainties from fitting simulation model trends to BEAVRS data in order to compute overall time-dependent uncertainty of fission reaction rates. It is found that axially-integrated fission chamber time-dependent 95% uncertainty values are 1.8% and 1.9% for Cycle 1 and Cycle 2 respectively, which match well with results using traditional methods for uncertainty quantification.
- Published
- 2020
- Full Text
- View/download PDF
23. A new discriminating high temperature fission chamber filled with xenon designed for sodium-cooled fast reactors
- Author
-
Giacomo Galli, Emmanuel Odic, C. Jammes, H. Hamrita, Michael J. Kirkpatrick, Laboratoire Génie électrique et électronique de Paris (GeePs), CentraleSupélec-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Dosimétrie, de Contrôle-commande et Instrumentation (LDCI), Service Physique EXpérimentale, d'essais en Sûreté et d'Instrumentation (SPESI), Département Etude des Réacteurs (DER), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Département Etude des Réacteurs (DER), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Sorbonne Université (FRANCE), Université Paris-Saclay (FRANCE), CentraleSupélec (FRANCE), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
- Subjects
Ionizing radiation ,inorganic chemicals ,Nuclear and High Energy Physics ,Xenon ,Physics::Instrumentation and Detectors ,Fission ,Neutron detector ,Instrumentation ,Nuclear engineering ,Nuclear Theory ,chemistry.chemical_element ,Sodium-cooled fast reactors ,Nuclear instrumentation ,Instrumentations et Détecteurs ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Physics::Plasma Physics ,Partial discharge ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Neutron detection ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physique Nucléaire Expérimentale ,Nuclear Experiment ,Physics ,Neutron-gamma discrimination ,Argon ,integumentary system ,010308 nuclear & particles physics ,technology, industry, and agriculture ,High temperature ,Radioactivity ,chemistry ,Fission chamber - Abstract
International audience; Xenon high temperature fission chamber, designed for sodium-cooled fast reactors, unlike the argon filled fission chambers, can operate at temperatures greater than 500◦C without partial-discharges and discriminate neutrons and partial-discharges at temperatures up to 650◦C.
- Published
- 2020
- Full Text
- View/download PDF
24. Etude des décharges partielles dans une chambre à fission haute température
- Author
-
Galli, Giacomo, Laboratoire Génie électrique et électronique de Paris (GeePs), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Saclay (COmUE), Philippe Dessante, Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
Décharge partielle ,Effet de point triple ,Réacteur nucléaire rapide refroidi au sodium ,Paschen’s law ,Partial discharge ,Triple point effect ,Fission chamber ,Haute température ,Sodium-cooled fast reactors ,Loi de Paschen ,High temperature ,[SPI.GCIV.GCN]Engineering Sciences [physics]/Civil Engineering/Génie civil nucléaire ,Chambre à fission - Abstract
The Commission for Atomic and Alternative Energy (CEA) is in charge of the fourth generation fast neutron reactor design. The instrumentation for neutron flux measurement of this future reactor will be based on fission chambers placed in-core. These high temperature fission chambers (HTFC) will have to operate at full reactor power, and thus at a temperature between 400°C and 650°C.A recent review of HTFC technology has revealed that some points need improvement to ensure greater reliability.In particular, a better understanding of the phenomenon of partial discharges (PD), which are observed in the fission chambers at high temperature, is needed. These PD pulses are indistinguishable from those produced by the products of fission caused by collision with neutrons with the fissile deposit within thechambers.In addition, they could accelerate aging of the ceramic insulators used in the chambers.Based on both experimental and theoretical approaches, this PhD work found several results.Tests on different fission chambers made it possible to characterize the DP signals vis-a-vis the neutron signals and to find an operational DP-neutron discrimination method. The DP signals were localized and a technological solution was proposed and successfully implemented to eliminate them.A calculation tool for neutron pulse simulation was also designed and tested successfully.An experiment on the effect of temperature on the Paschen curve, in a closed gas volume, was designed and carried out giving initial interesting results.; Le Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) a en charge la conception d'un réacteur à neutrons rapides de quatrième génération.L'instrumentation neutronique de ce futur réacteur s'appuiera sur des chambres à fission placées en cuve. Ces chambres à fission à haute température (CFHT) devront fonctionner à pleine puissance à une température comprise entre 400°C et 650°C.Un bilan récent de la technologie CFHT a révélé que certains points sont à améliorer afin d'en garantir une plus grande fiabilité.En particulier, on recherche une meilleure compréhension du phénomène de décharges partielles. Celles-ci engendrent des impulsions non discernables de celles produites par les fragments de fission du dépôt fissile.Par ailleurs, elles pourraient accélérer le vieillissement des isolants minéraux.En s'appuyant sur une démarche expérimentale et théorique, ce travail de thèse a apporté plusieurs résultats.Les tests sur les différentes chambres à fission ont permis de caractériser les signaux de DP, vis à vis des signaux neutroniques et de trouver une méthode efficace de discrimination DP-neutron. De la même manière, les signaux DP ont été localisés et une solution technologique a été proposée et mise en oeuvre avec succès pour les éliminer.Un outil de calcul pour la simulation des impulsions neutroniques a été conçu et testé avec succès.Une expérience sur l'effet de la température sur la courbe de Paschen, dans un volume de gaz fermé, a été conçue et réalisée en donnant les premiers résultats intéressants.
- Published
- 2018
25. Study of partial partial-discharge-induced pulses in a high temperature fission chambers
- Author
-
Galli, Giacomo, Laboratoire Génie électrique et électronique de Paris (GeePs), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Saclay (COmUE), and Philippe Dessante
- Subjects
Décharge partielle ,Effet de point triple ,Réacteur nucléaire rapide refroidi au sodium ,Paschen’s law ,Partial discharge ,Triple point effect ,Fission chamber ,Haute température ,Sodium-cooled fast reactors ,Loi de Paschen ,High temperature ,[SPI.GCIV.GCN]Engineering Sciences [physics]/Civil Engineering/Génie civil nucléaire ,Chambre à fission - Abstract
The Commission for Atomic and Alternative Energy (CEA) is in charge of the fourth generation fast neutron reactor design. The instrumentation for neutron flux measurement of this future reactor will be based on fission chambers placed in-core. These high temperature fission chambers (HTFC) will have to operate at full reactor power, and thus at a temperature between 400°C and 650°C.A recent review of HTFC technology has revealed that some points need improvement to ensure greater reliability.In particular, a better understanding of the phenomenon of partial discharges (PD), which are observed in the fission chambers at high temperature, is needed. These PD pulses are indistinguishable from those produced by the products of fission caused by collision with neutrons with the fissile deposit within thechambers.In addition, they could accelerate aging of the ceramic insulators used in the chambers.Based on both experimental and theoretical approaches, this PhD work found several results.Tests on different fission chambers made it possible to characterize the DP signals vis-a-vis the neutron signals and to find an operational DP-neutron discrimination method. The DP signals were localized and a technological solution was proposed and successfully implemented to eliminate them.A calculation tool for neutron pulse simulation was also designed and tested successfully.An experiment on the effect of temperature on the Paschen curve, in a closed gas volume, was designed and carried out giving initial interesting results.; Le Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) a en charge la conception d'un réacteur à neutrons rapides de quatrième génération.L'instrumentation neutronique de ce futur réacteur s'appuiera sur des chambres à fission placées en cuve. Ces chambres à fission à haute température (CFHT) devront fonctionner à pleine puissance à une température comprise entre 400°C et 650°C.Un bilan récent de la technologie CFHT a révélé que certains points sont à améliorer afin d'en garantir une plus grande fiabilité.En particulier, on recherche une meilleure compréhension du phénomène de décharges partielles. Celles-ci engendrent des impulsions non discernables de celles produites par les fragments de fission du dépôt fissile.Par ailleurs, elles pourraient accélérer le vieillissement des isolants minéraux.En s'appuyant sur une démarche expérimentale et théorique, ce travail de thèse a apporté plusieurs résultats.Les tests sur les différentes chambres à fission ont permis de caractériser les signaux de DP, vis à vis des signaux neutroniques et de trouver une méthode efficace de discrimination DP-neutron. De la même manière, les signaux DP ont été localisés et une solution technologique a été proposée et mise en oeuvre avec succès pour les éliminer.Un outil de calcul pour la simulation des impulsions neutroniques a été conçu et testé avec succès.Une expérience sur l'effet de la température sur la courbe de Paschen, dans un volume de gaz fermé, a été conçue et réalisée en donnant les premiers résultats intéressants.
- Published
- 2018
26. Commercial Design of Custom Front-end Electronics for a High Temperature Fission Chamber
- Author
-
Charles L. Britton, Lorenzo Fabris, Richard J. Wunderlich, Christian M. Petrie, Padhraic Mulligan, and N. Dianne Bull Ezell
- Subjects
Materials science ,Fission chamber ,Mechanical engineering ,Front end electronics - Published
- 2018
- Full Text
- View/download PDF
27. FY2018 Report on Fission Chamber Development at LANL
- Author
-
Todd Bredeweg
- Subjects
Fission chamber ,Nuclear engineering ,Environmental science - Published
- 2018
- Full Text
- View/download PDF
28. Characterization and Localization of Partial-Discharge-Induced Pulses in Fission Chambers Designed for Sodium-Cooled Fast Reactors
- Author
-
E. Odic, C. Jammes, Giacomo Galli, H. Hamrita, M. J. Kirkpatrick, B. Cantonnet, Ph. Dessante, J-C. Nappe, Ph. Molinie, Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Génie électrique et électronique de Paris (GeePs), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Dosimétrie, de Contrôle-commande et Instrumentation (LDCI), Service Physique EXpérimentale, d'essais en Sûreté et d'Instrumentation (SPESI), Département Etude des Réacteurs (DER), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Département Etude des Réacteurs (DER), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), PHOTONIS France S.A.S, Nuclear Instrumentation, Work supported by CEA, Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Work supported by the CEA, the French Alternative Energies and Atomic Energy Commission., Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Sorbonne Université (FRANCE), Université Paris-Saclay (FRANCE), Université Pierre et Marie Curie, Paris 6 - UPMC (FRANCE), CentraleSupélec (FRANCE), and Photonis (FRANCE)
- Subjects
Fission ,Physics::Instrumentation and Detectors ,Neutron detector ,Nuclear engineering ,Nuclear Theory ,Sodium-cooled fast reactors ,sodium-cooled fast reactors ,01 natural sciences ,7. Clean energy ,Signal ,010305 fluids & plasmas ,high temperature ,Neutron flux ,Neutron detection ,Physique Nucléaire Expérimentale ,Nuclear Experiment ,nuclear instrumentation ,instrumentation ,Electronic architecture ,Physics ,Analyse de données, Statistiques et Probabilités ,radioactivity ,Electrode ,Fission chamber ,neutron detector ,ionizing radiation ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] ,Signal processing ,Nuclear and High Energy Physics ,Materials science ,QC1-999 ,partial discharge (PD) ,spectrum analysis ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Partial discharge ,0103 physical sciences ,Triple point effect ,Neutron ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Electrical and Electronic Engineering ,010306 general physics ,— Fission chamber ,Neutron-gamma discrimination ,triple point effect ,010308 nuclear & particles physics ,010401 analytical chemistry ,neutrons ,High temperature ,0104 chemical sciences ,partial discharge ,Nuclear Energy and Engineering ,Electric discharge - Abstract
During the operation of the Superphenix and Phenix reactors, an aberrant electrical signal was detected from the fission chambers used for neutron flux monitoring. This signal, thought to be due to partial electrical discharge (PD) is similar to the signal resulting from neutron interactions, and is generated in fission chambers at temperatures above 400 °C. This paper reports work on the characterization and localization of the source of this electrical signal in a High Temperature Fission Chamber (HTFC). The relation between the shape of the PD signal and various parameters (nature and pressure of the chamber filling gas, electrode gap distance, and fission chamber geometry) are first described. Next, experiments designed to identify the location within the chambers where the PD are being generated are presented. After verification and refinement of the results of these localization studies, it should be possible to propose changes to the fission chamber in order to reduce or eliminate the PD signal.
- Published
- 2018
- Full Text
- View/download PDF
29. Real-time wide-range neutron flux monitor for thorium-based molten salt reactor
- Author
-
Xiang Zhou, Guo-Qing Huang, Z. Liu, Chao Chen, and Zejie Yin
- Subjects
Normalization (statistics) ,Nuclear and High Energy Physics ,Materials science ,Molten salt reactor ,010308 nuclear & particles physics ,Fission ,Fission chamber ,Nuclear engineering ,Neutron flux monitor ,Thorium ,chemistry.chemical_element ,01 natural sciences ,030218 nuclear medicine & medical imaging ,CAN bus ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,Nuclear Energy and Engineering ,chemistry ,law ,0103 physical sciences ,Field-programmable gate array - Abstract
A novel full-digital real-time neutron flux monitor (NFM) has been developed for thorium-based molten salt reactor (TMSR). The system is based on the high-speed, parallel, and pipeline processing of the field programmable gate array as well as the high-stability controller area network platform. A measurement range of 108 counts per second is achieved with a single fission chamber by utilizing the normalization of the count and Campbell algorithms. With the advantages of using the measurement range, system integrity, and real-time performance, digital NFM has been tested in the Xi’an pulsed reactor fission experiments and was found to exhibit superior experimental performance.
- Published
- 2018
- Full Text
- View/download PDF
30. Evaluation of Testing Facilities for a High Temperature Fission Chamber Design
- Author
-
Nesrin Ozgan Cetiner and N. Dianne Bull Ezell
- Subjects
Materials science ,Fission chamber ,Nuclear engineering - Published
- 2018
- Full Text
- View/download PDF
31. Measured and simulated Cf(sf)252 prompt neutron-photon competition
- Author
-
Ionel Stetcu, Jørgen Randrup, Patrick Talou, Matthew Devlin, Shaun D. Clarke, Ramona Vogt, Matthew J. Marcath, Robert C. Haight, Sara A. Pozzi, and Patricia Schuster
- Subjects
Physics ,Scintillation ,Photon ,010308 nuclear & particles physics ,Fission chamber ,Fission ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,01 natural sciences ,Nuclear physics ,Prompt neutron ,Nuclear fission ,0103 physical sciences ,Neutron ,Nuclear Experiment ,010306 general physics - Abstract
Neutrons and photons are characteristically emitted during the nuclear fission process when a deformed, neutron-rich nucleus divides into two fragments that then deexcite. During deexcitation, neutrons are emitted first, followed by photons; this process gives rise to correlated emissions. Few data exist on event-by-event neutron-photon correlation. In this work, $^{252}\mathrm{Cf}(\mathrm{s}\mathrm{f})$ neutron and photon correlations were measured with an array of 45 liquid organic scintillation detectors and a fission chamber. The measured correlations are compared with MCPNX-PoliMi simulations using the built-in model and two event-by-event fission models, CGMF and FREYA, which predict correlations in prompt emissions from fission. Experimental results suggest weak neutron-photon competition during fragment deexcitation.
- Published
- 2018
- Full Text
- View/download PDF
32. Micro-Pocket Fission Detectors (MPFDs) for in-core neutron detection
- Author
-
Sarah R. Stevenson, Michael A. Reichenberger, Jeremy A. Roberts, Takashi Ito, Philip B. Ugorowski, Daniel M. Nichols, T. C. Unruh, and Douglas S. McGregor
- Subjects
Materials science ,Fission ,Fission chamber ,020209 energy ,Nuclear engineering ,Detector ,02 engineering and technology ,Nuclear reactor ,law.invention ,Core (optical fiber) ,Nuclear physics ,Nuclear Energy and Engineering ,law ,0202 electrical engineering, electronic engineering, information engineering ,Neutron detection ,Neutron ,Reactive material - Abstract
Neutron sensors capable of real-time measurement of neutrons in high-flux environments are necessary for tests aimed at demonstrating the performance of experimental nuclear reactor fuels and materials in material test reactors (MTRs). In-core Micro-Pocket Fission Detectors (MPFDs) have been studied at Kansas State University for many years. Previous MPFD prototypes were successfully built and tested with promising results. Efforts are now underway to develop advanced MPFDs with radiation-resistant, high-temperature materials capable of withstanding irradiation test conditions in high performance material and test reactors. Stackable MPFDs have been designed, built, and successfully demonstrated as in-core neutron sensors. Advances in the electrodeposition and measurement of neutron reactive material, along with refinements to composition optimization simulations, have enhanced the capabilities of contemporary MPFDs.
- Published
- 2016
- Full Text
- View/download PDF
33. Evaluation of neutron flux and fission rate distributions inside the JSI TRIGA Mark II reactor using multiple in-core fission chambers
- Author
-
Christophe Destouches, Luka Snoj, Damien Fourmentel, Loïc Barbot, Tanja Goričanec, Anže Jazbec, Gašper Žerovnik, Jozef Stefan Institute [Ljubljana] (IJS), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Détection et de Caractérisation des Agents du Risque Environnemental (LDCAE), Département Etude des Réacteurs (DER), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Fission chamber ,Fission ,Control rod ,Nuclear engineering ,TRIGA ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,010403 inorganic & nuclear chemistry ,01 natural sciences ,control rod movement ,Nuclear physics ,Neutron flux ,0103 physical sciences ,MCNP ,Nuclear Experiment ,neutron flux redistribution ,fission rate profile ,Physics ,fission chamber ,multiple in-core detectors ,PACS: 24.10.L, 28.20.-v ,010308 nuclear & particles physics ,neutron flux profile ,Detector ,0104 chemical sciences ,Fission rate ,Nuclear Energy and Engineering ,Nuclear reactor core ,research reactor - Abstract
Within the bilateral project between the CEA Cadarache and the Jožef Stefan Institute (JSI) a wide variety of measurements using multiple fission chambers simultaneously inside the reactor core were performed. The fission rate axial profiles were measured at different positions in the reactor core and at different control rod configurations. A relative comparison of the calculated fission rates using the MCNP code and the measured fission rates was performed. In general the agreement between the measurements and calculations is good, with the deviations within the uncertainties. For better observation and understanding of the neutron flux redistribution due to the control rod movement, the neutron flux and fission rate had been calculated through the entire reactor core for different control rod configurations. The detector position with minimum signal variations due to the regulating and compensating control rod movement during normal operation was determined. The minimum variation is optimal in case we want to reliably determine the reactor power without influence of the regulating and compensating control rod positions.
- Published
- 2018
- Full Text
- View/download PDF
34. Nuclear instrumentation in VENUS-F
- Author
-
A. Kochetkov, J. Wagemans, Luc Borms, G. Vittiglio, A. Krása, and C. Van Grieken
- Subjects
Materials science ,Fission ,020209 energy ,Instrumentation ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Nuclear Theory ,Activation ,02 engineering and technology ,Kinetic energy ,01 natural sciences ,7. Clean energy ,Nuclear physics ,reactor instrumentation ,Neutron flux ,0103 physical sciences ,Thermal ,0202 electrical engineering, electronic engineering, information engineering ,Neutron ,Nuclear Experiment ,fission chamber ,010308 nuclear & particles physics ,Physics ,neutrons ,fast reactor ,calibration ,Neutron temperature ,Coolant - Abstract
VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands) are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method) and kinetic parameters (with the Rossi-alpha method). Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum).
- Published
- 2018
35. Measurement of the prompt fission γ-ray spectrum of 242Pu
- Author
-
Urlass, S., Beyer, R., Junghans, A. R., Kögler, T., Schwengner, R., and Wagner, A.
- Subjects
fission chamber ,nELBE ,plutonium ,prompt fission ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Physics::Atomic and Molecular Clusters ,gamma-rays ,242Pu ,Nuclear Experiment - Abstract
The prompt γ-ray spectrum of fission fragments is important in understanding the dynamics of the fission process, as well as for nuclear engineering in terms of predicting the γ-ray heating in nuclear reactors. The γ-ray spectrum measured from the fission fragments of the spontaneous fission of 242Pu will be presented here. A fission chamber containing in total 37mg of 242Pu was used as active sample. The γ-quanta were detected with high time- and energy-resolution using LaBr3 and HPGe detectors, respectively, in coincidence with spontaneous fission events detected by the fission chamber. The acquired γ-ray spectra were corrected for the detector response using the spectrum stripping method. About 70 million fission events were detected which results in a very low statistical uncertainty and a wider energy range covered compared to previous measurements. The prompt fission γ-ray spectrum measured with the HPGe detectors shows structures that allow conclusions about the nature of γ-ray transitions in the fission fragments. The average photon multiplicity of 8.2 and the average total energy release by prompt photons per fission event of about 6.8 MeV were determined for both detector types.
- Published
- 2018
36. Measurement of the prompt fissionγ-ray spectrum of 242Pu
- Author
-
Roland Beyer, Andreas Wagner, Arnd R. Junghans, Sebastian Urlass, Ronald Schwengner, and T. Kögler
- Subjects
Physics ,Photon ,010308 nuclear & particles physics ,Fission ,Fission chamber ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Detector ,Nuclear Theory ,01 natural sciences ,Spectral line ,Coincidence ,Nuclear physics ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Multiplicity (chemistry) ,010306 general physics ,Nuclear Experiment ,Spontaneous fission - Abstract
The prompt γ-ray spectrum of fission fragments is important in understanding the dynamics of the fission process, as well as for nuclear engineering in terms of predicting the γ-ray heating in nuclear reactors. The γ-ray spectrum measured from the fission fragments of the spontaneous fission of 242Pu will be presented here. A fission chamber containing in total 37mg of 242Pu was used as active sample. The γ-quanta were detected with high time- and energy-resolution using LaBr3 and HPGe detectors, respectively, in coincidence with spontaneous fission events detected by the fission chamber. The acquired γ-ray spectra were corrected for the detector response using the spectrum stripping method. About 70 million fission events were detected which results in a very low statistical uncertainty and a wider energy range covered compared to previous measurements. The prompt fission γ-ray spectrum measured with the HPGe detectors shows structures that allow conclusions about the nature of γ-ray transitions in the fission fragments. The average photon multiplicity of 8.2 and the average total energy release by prompt photons per fission event of about 6.8 MeV were determined for both detector types.
- Published
- 2018
37. Generalized Signal Conditioning Module for Spectrometers at CSNS-WNS
- Author
-
Wang Qi, Xincheng Qi, Chen Yanli, Cao Ping, and An Qi
- Subjects
Physics ,Spectrometer ,Physics::Instrumentation and Detectors ,Fission chamber ,Detector ,Electronic engineering ,Readout electronics ,Neutron source ,Structure based ,Signal conditioning ,Spallation Neutron Source - Abstract
There are several spectrometers in White Neutron Source of China Spallation Neutron Source (CSNS-WNS) including detectors of C6D6, Silicon, fission chamber and light charged particle etc. Matching signals from these various detectors becomes design challenge for readout electronics design. In this paper, a generalized readout structure based on PXIe platform is proposed. Signal conditioning module named SCM plays important role in connecting signals from various detectors to a uniform readout system. SCM can be adapted to a variety of detectors by parameter adjustment. Test results show that this SCM has a good performance, which meets the requirement of detectors at CSNS- WNS.
- Published
- 2018
- Full Text
- View/download PDF
38. A study of beryllium moderator thickness for a fission chamber with fast neutron measurements
- Author
-
Hongrui Cao, Zejie Yin, Wen-Di Wang, Jing Cao, and Guo-Liang Yuan
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Fission chamber ,Monte Carlo method ,chemistry.chemical_element ,01 natural sciences ,Particle transport ,Neutron temperature ,010305 fluids & plasmas ,Nuclear physics ,Nuclear Energy and Engineering ,chemistry ,Neutron flux ,0103 physical sciences ,Neutron cross section ,Neutron ,Beryllium - Abstract
The detection efficiency of the fission chamber (FC) is very important for studying the neutron flux measurement (NFM) system in ITER. In this article, we mainly focus our attention on the influence of the moderator. With the Monte Carlo particle transport simulation tool named Geant4, we make a simulation of FC detection efficiency with different levels of thickness of a beryllium moderator. Two manufactured FCs for ITER-NFM systems are then used to test the parameters and performance. The test results agree well with our simulation.
- Published
- 2017
- Full Text
- View/download PDF
39. Dependability of the fission chambers for the neutron flux monitoring system of the french GEN-IV SFR
- Author
-
Filliatre, P., Jammes, C., Elter, Z., de Izarra, G., Hamrita, H., Bakkali, M., Galli, G., Cantonnet, B., Nappe, Jc., CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département Etude des Réacteurs (DER), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), PHOTONIS France S.A.S, Nuclear Instrumentation, and amplexor, amplexor
- Subjects
[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th] ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex] ,Fission chamber ,Neutron flux monitoring ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Instrumentation - Abstract
International audience; The neutron flux monitoring system of the French sodium-cooled fast reactor will rely on fission chambers that permit both reactivity control and power level monitoring from startup to full power. They are installed inside the reactor vessel, putting severe constraints on the detector design to ensure its dependability. In this paper, we present the Photonis high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability and justify their specifications with the use of simulation and experimental results. We show that the HTFC dependability is enhanced thanks to a robust physical design. In order to satisfy the requirement of wide-range capability, we propose to estimate the count rate of a HTFC using the third-order cumulant of its signal. The use of this cumulant can be seen as an extension of the so-called Campbelling mode, based on the variance, hence the name high order Campbelling method (HOC).
- Published
- 2017
40. Weld Development for Aluminum Fission Chamber
- Author
-
Jesse Norris Martinez and Carl Edward Cross
- Subjects
Crystallography ,Materials science ,chemistry ,law ,Fission chamber ,Aluminium ,Metallurgy ,chemistry.chemical_element ,Welding ,law.invention - Published
- 2017
- Full Text
- View/download PDF
41. Rejection of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors
- Author
-
H. Hamrita, Giacomo Galli, C. Jammes, F. Laine, Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Département Etude des Réacteurs (DER), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
- Subjects
Nuclear and High Energy Physics ,Sodium fast reactor ,Fission ,Sodium ,chemistry.chemical_element ,spectrum analysis ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,010305 fluids & plasmas ,Autre ,Physics::Plasma Physics ,0103 physical sciences ,Neutron detection ,Pulse shape analysis ,signal processing ,nuclear instrumentation ,Physics ,instrumentation ,fission chamber ,Neutron-gamma discrimination ,detector ,High Temperature Fission Chamber ,010308 nuclear & particles physics ,neutrons ,Biasing ,chemistry ,Partial discharge ,Atomic physics ,Partial Discharge ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; Under given temperature and bias voltage conditions, partial discharges can create pulses in fission chambers. Based on experimental results, this phenomenon is in-depth investigated and discussed. A pulse-shape-analysis technique is proposed to discriminate neutron-induced pulses from partial-discharge-induced ones.
- Published
- 2017
- Full Text
- View/download PDF
42. JSI TRIGA neutron and gamma field characterization by TLD measurements
- Author
-
Klemen Ambrožič, Klaudia Malik, Barkara Obryk, and Luka Snoj
- Subjects
Materials science ,Physics::Instrumentation and Detectors ,QC1-999 ,Nuclear engineering ,mcp-7 ,Radiation ,01 natural sciences ,mcp-n ,030218 nuclear medicine & medical imaging ,TRIGA ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,ionization chamber ,law ,0103 physical sciences ,Neutron ,triga ,Irradiation ,delayed gamma field ,fission chamber ,010308 nuclear & particles physics ,Physics ,tld ,Nuclear reactor ,r2s ,Ionization chamber ,Thermoluminescent dosimeter ,Delayed neutron - Abstract
A well characterized radiation field inside a research nuclear reactor irradiation facilities enables precise qualification of radiation effects to the irradiated samples such as nuclear heating or changes in their electrical or material properties. To support the increased utilization of the JSI TRIGA reactor irradiation facilities in the past few years mainly on account of testing novel detector designs, electronic components and material samples, we are working on increasing the neutron and gamma field characterization accuracy using various modeling and measurement techniques. In this paper we present the dose field measurements using thermo-luminescent detectors (TLD’s) with different sensitivities neutron and gamma sensitivities, along with multiple ionization and fission chamber. Experiment was performed in several steps from reactor start-up, steady operation and a rapid shutdown, during which the ionization and fission chamber signals were acquires continuously, while the TLD’s were being irradiated at different stages during reactor operation and after shutdown, to also capture response to delayed neutron and gamma field. The results presented in this paper serve for validation of JSI designed JSIR2S code for delayed radiation field determination, initial results of its application on the JSI TRIGA TLD measurements will also be presented.
- Published
- 2020
- Full Text
- View/download PDF
43. In-Core Flux Sensor Evaluations at the ATR Critical Facility
- Author
-
G. R. Imel, Benjamin M. Chase, Joy L. Rempe, Todd Sherman, Jason Harris, Jean-François Villard, T. C. Unruh, and David W. Nigg
- Subjects
Nuclear physics ,Idaho National Laboratory ,Nuclear and High Energy Physics ,Nuclear Energy and Engineering ,Fission chamber ,Nuclear engineering ,Environmental science ,Advanced Test Reactor ,User Facility ,Condensed Matter Physics - Abstract
As part of an Idaho State University (ISU)–led Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) collaborative project that includes Idaho National Laboratory (INL) and the Frenc...
- Published
- 2014
- Full Text
- View/download PDF
44. Development of neutron spectrum analysis method to assess the content of fissile isotopes in SFA
- Author
-
Aleksandr Valer’evich Mitskevich
- Subjects
Fuel assembly ,Fissile material ,Isotopes of uranium ,Chemistry ,Nuclear engineering ,Residence time ,235U and 239Pu content assessment ,transmission ,lcsh:TK9001-9401 ,Helium counter tube ,Nuclear physics ,Neutron spectrum analysis ,Nuclear Energy and Engineering ,Spent fuel ,Measuring instrument ,Uranium-235 ,Fission chamber ,Neutron detection ,lcsh:Nuclear engineering. Atomic power ,Neutron ,Energy source ,Plutonium-239 - Abstract
The paper presents the integrated neutron spectrum analysis as a potential method for estimating the contents of fissile isotopes in SFAs. Two method implementation variants are described: (1) measurement of SFA average transmission and (2) measurement of sample average transmission in the spectrum that has passed a SFA. The authors describe the dependences of SFA average transmission on its content of the required isotope obtained by means of two types of detectors: helium counter tube and fission chamber. Also, the authors propose a method to estimate SFA burn-up by means of the integrated NSA. In addition, SFA residence time influence on transmission is estimated.
- Published
- 2014
- Full Text
- View/download PDF
45. Electroluminescent fission chamber for neutron registration in counting mode with fiber optic signal acquisition
- Author
-
V. E. Yants and S. G. Lebedev
- Subjects
Optical fiber ,Materials science ,Fission chamber ,business.industry ,Mode (statistics) ,Electroluminescence ,Signal acquisition ,law.invention ,Optics ,law ,Neutron ,business ,Instrumentation ,Mathematical Physics - Published
- 2019
- Full Text
- View/download PDF
46. Measurement of the 236U(n,f) cross-section between 4 and 10 MeV with Micromegas detectors
- Author
-
A. Tsinganis, N. Patronis, A. Lagoyannis, A. Stamatopoulos, M. Diakaki, R. Vlastou, A. Kalamara, M. Kokkoris, V. Michalopoulou, European Organization for Nuclear Research (CERN), CEA Cadarache, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), National Technical University of Athens [Athens] (NTUA), National Center for Scientific Research 'Demokritos' (NCSR), and University of Ioannina
- Subjects
Nuclear physics ,Physics ,Cross section (physics) ,Fission ,Fission chamber ,Detector ,Neutron ,MicroMegas detector ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Neutron radiation - Abstract
27th Annual Symposium of the Hellenic Nuclear Physics Society, 8 - 9 June 2018, Athènes (Grèce); International audience; In the present work, the measurement of the $^{236}$U(n,f) cross section was performed, with reference to the $^{238}$U(n,f) reaction. The measurements took place at the neutron beam facility of the National Centre for Scientific Research "Demokritos" (Greece) and the quasi-monoenergetic neutron beams were produced via the $^2$H(d,n)$^3$He reaction in the energy range 4-10 MeV. Five actinide targets (two $^{236}$U, two $^{238}$U and one $^{235}$U) and the corresponding Micromegas detectors for the detection of the fission fragments were used. Detailed Monte Carlo simulations were performed, on one hand for the study of the neutron flux and energy distribution at the position of each target, and on the other hand for the study of the energy deposition of the fission fragments in the active volume of the detector. The mass and homogeneity of the actinide targets were experimentally determined via alpha spectroscopy and the Rutherford Backscattering Spectrometry, respectively. The experimental procedure, the analysis, the methodology implemented to correct for the presence of parasitic neutrons and the cross section results will be presented and discussed.
- Published
- 2019
- Full Text
- View/download PDF
47. Modeling of a highly enriched 235U fission chamber for spent fuel assay
- Author
-
A. Borella, Riccardo Rossa, and K. van der Meer
- Subjects
Nuclear fission product ,Physics::Instrumentation and Detectors ,Fission ,Fission chamber ,Nuclear engineering ,Monte Carlo method ,Detector ,Enriched uranium ,Spent nuclear fuel ,Nuclear physics ,Nuclear Energy and Engineering ,Environmental science ,Neutron ,Nuclear Experiment - Abstract
Fission chambers loaded with high enriched uranium are used for spent fuel measurements in the so-called Fork detector. The Fork detector is one of the work-horses used by safeguards inspectors for spent fuel measurements during verification activities in the framework of the Non-Proliferation and Euratom Treaties. Having an accurate and validated model of the measurement equipment is beneficial for the investigation of this type of applications. SCK•CEN is carrying out a significant effort to model the Fork detector with the MCNPX code. However, scarce information is known about the fission chambers. This work describes the impact of the design information of the fission chamber on the calculated detector sensitivity and, consequently, on the overall Fork detector response for neutrons, using Monte Carlo simulations. The heavy ions transport in the active layer of the fission chamber was also studied and the resulting fission product energy spectra were compared with the available experimental data.
- Published
- 2013
- Full Text
- View/download PDF
48. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor
- Author
-
Damien Fourmentel, C. Reynard-Carette, Abdallah Lyoussi, P. Filliatre, J. F. Villard, and H. Carcreff
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Photon ,Neutron flux ,Fission chamber ,Ionization chamber ,Photon flux ,Deposition (phase transition) ,Materials testing ,Irradiation ,Instrumentation - Abstract
Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g −1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.
- Published
- 2013
- Full Text
- View/download PDF
49. Detecting neutron spectrum perturbations due to coolant density changes in a small lead-cooled fast nuclear reactor
- Author
-
Peter Wolniewicz, Staffan Jacobsson Svärd, Michael Österlund, Ane Håkansson, Carl Hellesen, and Peter Jansson
- Subjects
Physics ,Nuclear Energy and Engineering ,law ,Fission chamber ,Nuclear engineering ,Heat exchanger ,Inherent safety ,Neutron ,Nuclear reactor ,law.invention ,Coolant - Abstract
The lead-cooled fast reactor (LFR) is one of the nuclear reactor technologies proposed by the Generation IV International Forum (GIF). The lead coolant allows for inherent safety properties attract ...
- Published
- 2013
- Full Text
- View/download PDF
50. Assessment of the High Temperature Fission Chamber Technology for the French Fast Reactor Program
- Author
-
T. Domenech, P. Filliatre, Benoit Geslot, Stephane Normand, and C. Jammes
- Subjects
Technology readiness ,Nuclear and High Energy Physics ,Nuclear Energy and Engineering ,Fission ,Fission chamber ,Neutron flux ,Nuclear engineering ,Electric breakdown ,Neutron detection ,Environmental science ,Neutron ,Electrical and Electronic Engineering ,Temperature measurement - Abstract
High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.