Back to Search Start Over

Inverse Problem Approach for the underwater localization of Fukushima Daiichi fuel debris with fission chambers

Authors :
Q. Lecomte
R. Pissarello
Karim Boudergui
C. Thiam
R. Woo
M. Trocmé
Frederic Laine
H. Hamrita
Adrien Sari
R. Delalez
Camille Frangville
Jonathan Dumazert
Romain Coulon
Frederick Carrel
B. Krausz
M. Bakkali
Laboratoire Capteurs et Architectures Electroniques (LCAE)
Département Métrologie Instrumentation & Information (DM2I)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Laboratoire National Henri Becquerel (LNHB)
ONET Technologies
The authors thank Mitsubishi Research Institute, Inc. , for funding this research.
Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Source :
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Elsevier, 2020, 954, pp.161347. ⟨10.1016/j.nima.2018.10.025⟩, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954, pp.161347. ⟨10.1016/j.nima.2018.10.025⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Fuel debris have a distinct neutron signature that can be detected to locate the said debris in a damaged nuclear power plant. Neutron measurement in a damaged PCV environment is however submitted to severe deployments constraints, including a high-dose-rate gamma background and limited available space. The study was therefore oriented towards small fission chambers (FC), with U-235-enriched active substrates. To investigate the expected performance of the FC in various irradiation conditions, a numerical model of the detector head was built. We describe the elaboration and experimental calibration of the numerical model and the Monte Carlo study of the fission rate inside U-235 coatings per generated neutron. The evaluation of a representative calibration coefficient then allowed us to carry out a multi-parameter performance study of a FC underwater, aiming at computing an explicit response function linking, on the one hand, the activity and spatial distribution of neutron emitters in a water container, with, one the other hand, the expected count rates measured by a fission chamber as a function of its radial and axial position inside the water volume. The FC underwater behavior was subsequently corroborated by a measurement campaign on a FC response, set at different positions inside a water drum, as a function of its axial and radial distance to a Cf-252 neutron source attached near the center of the container. We finally present an approach in which fuel debris localization is defined as an Inverse Problem, solvable with a Maximum-Likelihood Expectation Maximization (ML-EM) iterative algorithm. The projector matrix is built by capitalization on the results of the previously consolidated numerical studies. The ML-EM was tested on simulated data sets with a varying number of active voxels. Our first results indicate that, for a thermal neutron flux in the order of 10 n.cm−2.s−1 at the detector, originating voxels are identified with a spatial resolution in the radial plane in the order of 10 to 100 cm2.

Details

Language :
English
ISSN :
01689002 and 18729576
Database :
OpenAIRE
Journal :
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Elsevier, 2020, 954, pp.161347. ⟨10.1016/j.nima.2018.10.025⟩, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954, pp.161347. ⟨10.1016/j.nima.2018.10.025⟩
Accession number :
edsair.doi.dedup.....692b06e472586eca1416f121a0953db9
Full Text :
https://doi.org/10.1016/j.nima.2018.10.025⟩