1. Quantum information phases in space-time: measurement-induced entanglement and teleportation on a noisy quantum processor
- Author
-
Jesse Hoke, Matteo Ippoliti, Dmitry Abanin, Rajeev Acharya, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Juan Atalaya, Ryan Babbush, Joseph Bardin, Andreas Bengtsson, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, Bob Buckley, David Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Zijun Chen, Ben Chiaro, Desmond Chik, Charina Chou, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander Crook, Ben Curtin, Alejandro Grajales Dau, Dripto Debroy, Alexander Del Toro Barba, Sean Demura, Augustin Di Paolo, Ilya Drozdov, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Lara Faoro, Edward Farhi, Reza Fatemi, Vinicius Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin Fowler, Brooks Foxen, William Giang, Craig Gidney, Dar Gilboa, Marissa Giustina, Raja Gosula, Jonathan Gross, Steve Habegger, Michael Hamilton, Monica Hansen, Matthew Harrigan, Sean Harrington, Paula Heu, Markus Hoffmann, Sabrina Hong, Trent Huang, Ashley Huff, William Huggins, Sergei Isakov, Justin Iveland, E. Jeffrey, Cody Jones, Pavol Juhas, Dvir Kafri, Kostyantyn Kechedzhi, Tanuj Khattar, Mostafa Khezri, Marika Kieferova, Seon Kim, Alexei Kitaev, Paul Klimov, Andrey Klots, Alexander Korotkov, Fedor Kostritsa, John Mark Kreikebaum, David Landhuis, Pavel Laptev, Kim-Ming Lau, Lily Laws, Joonho Lee, Kenny Lee, Yuri Lensky, Brian Lester, Alexander Lill, Wayne Liu, Aditya Locharla, Fionn Malone, Orion Martin, Jarrod McClean, Matt McEwen, Kevin Miao, Amanda Mieszala, Shirin Montazeri, Alexis Morvan, Ramis Movassagh, Wojciech Mruczkiewicz, Matthew Neeley, Charles Neill, Ani Nersisyan, Michael Newman, Jiun How Ng, Anthony Nguyen, Murray Nguyen, Murphy Niu, Thomas O'Brien, Seun Omonije, Alex Opremcak, Andre Petukhov, Rebecca Potter, Leonid Pryadko, Chris Quintana, Charles Rocque, Nicholas Rubin, Negar Saei, Daniel Sank, Kannan Sankaragomathi, Kevin Satzinger, Henry Schurkus, Christopher Schuster, Michael Shearn, Aaron Shorter, Noah Shutty, Shvarts Vladimir, Jindra Skruzny, W. Smith, Rolando Somma, George Sterling, Doug Strain, Marco Szalay, Alfredo Torres, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Theodore White, Bryan Woo, Cheng Xing, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobrist, Hartmut Neven, Dave Bacon, Sergio Boixo, Jeremy Hilton, Erik Lucero, Anthony Megrant, Julian Kelly, Yu Chen, Vadim Smelyanskiy, Xiao Mi, Vedika Khemani, and Pedram Roushan
- Abstract
Measurement has a special role in quantum theory1: by collapsing the wavefunction it can enable phenomena such as teleportation2 and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time3-10 that go beyond established paradigms for characterizing phases, either in or out of equilibrium11-13. On present-day NISQ processors14, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping9,15-17 to avoid mid-circuit measurement and access different manifestations of the underlying phases—from entanglement scaling3,4 to measurement-induced teleportation18—in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
- Published
- 2023